Skip to main content
Log in

Capacity analysis for LOS millimeter–wave quadrature spatial modulation

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Capacity analysis for millimeter-wave (mmWave) quadrature spatial modulation (QSM) multiple-input multiple-output (MIMO) system is presented in this paper. QSM is a new MIMO technique proposed to enhance the performance of conventional spatial modulation while retaining almost all its inherent advantages. Furthermore, mmWave utilizes a license-free wide-bandwidth spectrum and is a very promising candidate for future wireless systems. Detailed and novel analysis of the mutual information and the capacity for line of sight (LOS) mmWave-QSM system are presented in this study. The conditions under which theoretical capacity can be achieved are derived and discussed. Also, mmWave channel design is conducted and a novel algorithm is proposed to overcome existing limitation for unbalanced MIMO configurations, i.e., when the number of receive antennas is less than that of the transmit antennas. Monte Carlo simulation results are provided to corroborate derived formulas. It is shown that significant performance enhancements can be achieved under different system and channel configurations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. Note, if u is uniformly distributed over the range \([0,2\pi ]\), then \(r=\exp (u)\) follows a circular uniform distribution [34].

References

  1. Pi, Z., & Khan, F. (2011). An introduction to millimeter-wave mobile broadband systems. IEEE Communications Magazine, 49(6), 101–107.

    Article  Google Scholar 

  2. Boccardi, F., Heath, R., Lozano, A., Marzetta, T., & Popovski, P. (2014). Five disruptive technology directions for 5G. IEEE Communications Magazine, 52(2), 74–80.

    Article  Google Scholar 

  3. Samimi, M. K., & Rappaport, T. S. (2015). 3-D statistical channel model for millimeter-wave outdoor mobile broadband communications. In Proceeding of the IEEE international conference on communication.

  4. Liu, P., Renzo, M., & Springer, A. (2016). Line-of-sight (los) spatial modulation (sm) for indoor mmwave communication at 60 GHz. IEEE Communications Magazine, 99, 1–1.

    Google Scholar 

  5. mmWave WPAN (IEEE 802.15.3c-2009), IEEE Std., Oct. 2009, Amendment to IEEE Std 802.15.3-2003.

  6. WiGig (IEEE 802.11ad), IEEE Std., (2012).

  7. WirelessHD, Std., (2010). [Online]. http://www.wirelesshd.org/.

  8. Li, Q., Li, G., Lee, W., il Lee, M., Mazzarese, D., & Clerckx, B. (2010). MIMO techniques in WiMAX and LTE: A feature overview. IEEE Communications Magazine, 48(5), 86–92.

    Article  Google Scholar 

  9. Osseiran, A., Stankovic, V., Jorswieck, E., Wild, T., Fuchs, M., & Olsson, M. (2007). A MIMO framework for 4G systems: WINNER concept and results. In Proceedings of IEEE workshop signal processing advances wireless communications (SPAWC 2007), Helsinki, Finland.

  10. Mietzner, J., Schober, R., Lampe, L., Gerstacker, W. H., & Höeher, P. A. (2009). Multiple-antenna techniques for wireless communications—A comprehensive literature survey. IEEE Communications Magazine, 11(2), 87–105.

    Google Scholar 

  11. Mesleh, R., Ikki, S. S., & Aggoune, H. M. (2013) Quadrature spatial modulation system, U.S. Patent 61/897,894.

  12. Mesleh, R., Ikki, S., & Aggoune, H. (2015). Quadrature spatial modulation. IEEE Transactions on Vehicular Technology, 64(6), 2738–2742.

    Article  Google Scholar 

  13. Mesleh, R., Haas, H., Sinanović, S., Ahn, C. W., & Yun, S. (2008). Spatial modulation. IEEE Transactions on Vehicular Technology, 57(4), 2228–2241.

    Article  Google Scholar 

  14. Jeganathan, J., Ghrayeb, A., Szczecinski, L., & Ceron, A. (2009). Space shift keying modulation for MIMO channels. IEEE Transactions on Vehicular Technology, 8(7), 3692–3703.

    Google Scholar 

  15. Di Renzo, M., Haas, H., Ghrayeb, A., Sugiura, S., & Hanzo, L. (2014). Spatial modulation for generalized MIMO: Challenges, opportunities, and implementation. IEEE Transactions on Vehicular Technology, 102(1), 56–103.

    Google Scholar 

  16. Mesleh, R., Ikki, S. S., & Aggoune, H. M. (2014). Quadrature spatial modulation-performance analysis and impact of imperfect channel knowledge. Transactions on Emerging Telecommunications Technologies,. doi:10.1002/ett.2905.

    Google Scholar 

  17. Younis, A., Mesleh, R., & Haas, H. (2015). Quadrature spatial modulation performance over Nakagami-m fading channels. IEEE Transactions on Vehicular Technology, 99, 1.

    Google Scholar 

  18. Zheng, B., Chen, F., Wen, M., Ji, F., Yu, H., & Liu, Y. (2015). Low-complexity ml detector and performance analysis for ofdm with in-phase/quadrature index modulation. IEEE Transactions on Vehicular Technology, 19(11), 1893–1896.

    Google Scholar 

  19. Li, J., Wen, M., Cheng, X., Yan, Y., Song, S., & Lee, M. H. (2016). Generalised pre-coding aided quadrature spatial modulation. IEEE Transactions on Vehicular Technology, 99, 1–1.

    Google Scholar 

  20. Kim, S. (2016). Antenna selection schemes in quadrature spatial modulation systems. ETRI Journal,. doi:10.4218/etrij.16.0115.0986.

    Google Scholar 

  21. Afana, A., Atawi, I., Ikki, S., & Mesleh, R. (2015). Energy efficient quadrature spatial modulation MIMO cognitive radio systems with imperfect channel estimation. In IEEE international conference on ubiquitous wireless broadband (ICUWB) (pp. 1–5).

  22. Afana, A., Mesleh, R., Ikki, S., & Atawi, I. (2015). Performance of quadrature spatial modulation in amplify-and-forward cooperative relaying. IEEE Transactions on Vehicular Technology, 99, 1–1.

    Google Scholar 

  23. Basnayaka, D., & Haas, H. (2015). Spatial modulation for massive MIMO. In Proceedings of IEEE international conference on communication (ICC) (pp. 1945–1950).

  24. Yang, Y., & Jiao, B. (2008). Information-guided channel-hopping for high data rate wireless communication. IEEE Communications Letters, 12(4), 225–227.

    Article  Google Scholar 

  25. Yang, Y., & Jiao, B. (Apr. 2008). On the capacity of information-guided channel-hopping in multi-antenna system. In IEEE INFOCOM Workshops 2008 (pp. 1–5).

  26. Yonghong, H., Pichao, W., Xiang, W., Xiaoming, Z., & Chunping, H. (2013). Ergodic capacity analysis of spatially modulated systems. IEEE Communications Letters, 10(7), 118–125.

    Google Scholar 

  27. Younis, A., Basnayaka, D. A., & Haas, H. (2014). Performance analysis for generalised spatial modulation. In Proceedings of European wireless conference (EW 2014), Barcelona, Spain, 14–16 (pp. 207–212).

  28. Torkildson, E., Madhow, U., & Rodwell, M. (2011). Indoor millimeter wave MIMO: Feasibility and performance. IEEE Transactions on Wireless Communications, 10(12), 4150–4160.

    Article  Google Scholar 

  29. Gesbert, D., Bolcskei, H., Gore, D., & Paulraj, A. (2002). Outdoor MIMO wireless channels: Models and performance prediction. IEEE Transactions on Wireless Communications, 50(12), 1926–1934.

    Article  Google Scholar 

  30. Torkildson, E., Zhang, H., & Madhow, U. (2010). Channel modeling for millimeter wave MIMO. In Information theory and applications workshop (ITA) (pp. 1–8).

  31. Kühn, V. (2006). Wireless communications over MIMO channels. New York: Wiley.

    Book  Google Scholar 

  32. Shannon, C. (1948). A mathematical theory of communication. Bell System Technical Journal 27:379–423 & 623–656.

  33. Simon, M. K., & Alouini, M. (2005). Digital communication over fading channels, 2nd Edn. In Telecommunications and signal processing. Wiley. ISBN: 978-0-471-64953-3.

  34. Jammalamadaka, S. R., & Sengupta, A. (2001). Topics in circular statistics, ser. multivariate analysis. Singapore: World Scientific Pub Co Inc. vol. 5.

    Google Scholar 

  35. Liu, P., & Springer, A. (2015). Space shift keying for LOS communication at mmWave frequencies. IEEE Transactions on Wireless Communications, 4(2), 121–124.

    Article  Google Scholar 

  36. Calderbank, A., & Ozarow, L. (1990). Nonequiprobable signaling on the Gaussian channel. IEEE Transactions on Information Theory, 36(4), 726–740.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raed Mesleh.

Appendix: Derivation of \(I(\imath ^{\mathfrak{R}},\imath ^{\mathfrak{I}},s;{\mathbf{y}})\) in (8)

Appendix: Derivation of \(I(\imath ^{\mathfrak{R}},\imath ^{\mathfrak{I}},s;{\mathbf{y}})\) in (8)

Proof

The entropy of the received signal vector, \(H(\mathbf{y})\), is given by

$$\begin{aligned} H\left( \mathbf{y}\right)= & {} -\int _{\mathbf{y}} p_{\mathbf{y}}\left( \mathbf{y}\right) \log _2 p_{\mathbf{y}}\left( \mathbf{y}\right) dy \\= & {} -\mathrm {E}_{\mathbf{y}} \left\{ \log _2 p_{\mathbf{y}}\left( \mathbf{y}\right) \right\} \; \end{aligned}$$
(19)

where \(p_y(\cdot )\) is the PDF of the received vector y,

$$\begin{aligned} p_{\mathbf{y}}= & {} \int \limits _{\mathbf{h}_{\imath ^{\mathfrak{R}}_t},\mathbf{h}_{\imath ^{\mathfrak{I}}_t},s_t} \left( p_{\mathbf{h}_{\imath ^{\mathfrak{R}}_t}}\cdot p_{\mathbf{h}_{\imath ^{\mathfrak{I}}_t}}\cdot p_{s_t}\right) p_{\left( \mathbf{y}|\mathbf{h}_{\imath ^{\mathfrak{R}}_t},\mathbf{h}_{\imath ^{\mathfrak{I}}_t},s_t\right) } \\= & {} \frac{ \sum \limits _{\mathbf{h}_{\imath ^{\mathfrak{R}}_t},\mathbf{h}_{\imath ^{\mathfrak{I}}_t},s_t} \exp \frac{-\left\| {\mathbf{y} - \left( {\mathbf{{h}}_{{\imath ^{\mathfrak{R}}}}}{s_t^{\mathfrak{R}}} + {\mathbf{{h}}_{{\imath ^{\mathfrak{I}}}}}{s_t^{\mathfrak{I}}}\right) } \right\| ^2_\mathrm{F}}{\sigma _n^2}}{N_t^2M \times \left( \pi \sigma _n^2\right) ^{N_r}} \\ \end{aligned}$$
(20)

From (19) and (20), the entropy of \(\mathbf{y}\) is,

$$\begin{aligned} H\left( \mathbf{y}\right) =&\log _2\left( N_t^2M\right) +N_r\log _2\left( \pi \sigma _n^2\right) \\&- \mathrm {E}_{\mathbf{y}}\left\{ \log _2 \sum \limits _{\mathbf{h}_{\imath ^{\mathfrak{R}}_t},\mathbf{h}_{\imath ^{\mathfrak{I}}_t},s_t} \exp \frac{-\left\| {\mathbf{y} - \left( {\mathbf{{h}}_{{\imath ^{\mathfrak{R}}}}}{s_t^{\mathfrak{R}}} + {\mathbf{{h}}_{{\imath ^{\mathfrak{I}}}}}{s_t^{\mathfrak{I}}}\right) } \right\| ^2_\mathrm{F}}{\sigma _n^2}\right\} \end{aligned}$$
(21)

The conditional entropy of \(\mathbf{y}\) on \(\mathbf{h}_{\imath ^{\mathfrak{R}}_t},\mathbf{h}_{\imath ^{\mathfrak{I}}_t}\), and \(s_t\) is,

$$\begin{aligned} H\left( \mathbf{y}|\mathbf{h}_{\imath ^{\mathfrak{R}}_t},\mathbf{h}_{\imath ^{\mathfrak{I}}_t}, s_t\right)= & {} -\int _{\mathbf{y}}p_{\left( \mathbf{y}| \mathbf{h}_{\imath ^{\mathfrak{R}}_t},\mathbf{h}_{\imath ^{\mathfrak{I}}_t},s_t\right) } \times \log _2p_{\left( \mathbf{y}|\mathbf{h}_{\imath ^{\mathfrak{R}}_t}, \mathbf{h}_{\imath ^{\mathfrak{I}}_t},s_t\right) } \\= & {} -\mathrm {E}_{\mathbf{y}}\left\{ \log _2 p_{\mathbf{y}| \mathbf{h}_{\imath ^{\mathfrak{R}}_t},\mathbf{h}_{\imath ^{\mathfrak{I}}_t},s_t}\right\} \\= & {} -\mathrm {E}_{\mathbf{n}}\left\{ \log _2 p_{\mathbf{n}} \left( {\mathbf{n} + \mathbf{u_y} }\right) \right\} \\= & {} {N_r}\log _2\left( \pi e \sigma _n^2\right) \end{aligned}$$
(22)

where \(\mathbf{u_y}= {{\mathbf{h}_{{\imath ^{\mathfrak{R}}}}}{s_t^{\mathfrak{R}}} + {\mathbf{h}_{{\imath ^{\mathfrak{I}}}}}{s_t^{\mathfrak{I}}}}\).

Substituting (21) and (22), in (7) lead to \(I(\imath ^{\mathfrak{R}}_t,\imath ^{\mathfrak{I}}_t,s_t;\mathbf{y})\) given in (8). \(\square\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mesleh, R., Younis, A. Capacity analysis for LOS millimeter–wave quadrature spatial modulation. Wireless Netw 24, 1905–1914 (2018). https://doi.org/10.1007/s11276-017-1444-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-017-1444-y

Keywords

Navigation