Skip to main content
Log in

Enhancing lifetime of visual sensor networks with a preprocessing-based multi-face detection method

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Recently, advances in hardware such as CMOS camera nodes have led to the development of Visual Sensor Networks (VSNs) that process sensed data and transmit the useful information to the base station for completing subsequent tasks. Today, object detection and sending useful information to the base station for object recognition is emerged as an important challenging issue in VSNs. Our investigations show that the face’s information is adequate for completing object recognition. According to literature, many approaches have been proposed for object detection and sending useful information to the base station to be completed subsequent tasks like object recognition. However, in most of them, lack of preprocessing methods in camera nodes causes network to be faced with large volume of data. For example when there is more than one object within the each camera node filed-of-view, conventional works deliver empty spaces among objects to the base station. Also, most of them send whole information about each object to the base station, while sending only face’s information of each object is adequate for completing object recognition. Therefore, in this paper, a preprocessing method in camera nodes named Preprocessing-based Multi-Face Detection (PMFD) is proposed. Our method works based on the extracting bounding box of each object’s face, using Boosting-based face detection algorithm, and sending only the faces’ information to the base station. The simulation results show that PMFD method has acceptable preprocessing time complexity and injects low volume of traffic into the network. Consequently, PMFD method prolongs the network lifetime in comparison with state-of-the-art algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Yick, J., Biswanath, M., & Dipak, G. (2008). Wireless sensor network survey. Computer Networks, 52(12), 2292–2330.

    Article  Google Scholar 

  2. Satyajayant, M., Reisslein, M., & Xue, G. (2008). A survey of multimedia streaming in wireless sensor networks. IEEE Communications Surveys & Tutorials, 10(4), 18–39.

    Article  Google Scholar 

  3. Akyildiz, I. F., Tommaso, M., & Kaushik, R. C. (2007). A survey on wireless multimedia sensor networks. Computer Networks, 51(4), 921–960.

    Article  Google Scholar 

  4. Gürses, E., & Özgür, B. A. (2005). Multimedia communication in wireless sensor networks. Annales des Télécommunications, 60(7–8), 872–900.

    Google Scholar 

  5. Stanislava, S., & Heinzelman, W. (2009). A survey of visual sensor networks. Advances in Multimedia, 2009, 1–21.

    Google Scholar 

  6. Feller, S. D., Zheng, Y., Cull, E., & Brady, D. J. (2002). Tracking and imaging humans on heterogeneous infrared sensor arrays for law enforcement applications. In AeroSens, 2002, international society for optics and photonics, pp. 212–221.

  7. Werner-Allen, G., Lorincz, K., Ruiz, M., Marcillo, O., Johnson, J., Lees, J., et al. (2006). Deploying a wireless sensor network on an active volcano. IEEE Internet Computing, 10(2), 18–25.

    Article  Google Scholar 

  8. Gao, T., Greenspan, D., Welsh, M., Juang, R. R., & Alm, A. (2006). Vital signs monitoring and patient tracking over a wireless network. In 27th annual international conference of the engineering in medicine and biology society, pp. 102–105.

  9. Lorincz, K., Malan, D. J., Fulford-Jones, T. R., Nawoj, A., Clavel, A., Shnayder, V., et al. (2004). Sensor networks for emergency response: Challenges and opportunities. IEEE Pervasive Computing, 3(4), 16–23.

    Article  Google Scholar 

  10. Akyildiz, I. F., Melodia, T., & Chowdhury, K. R. (2008). Wireless multimedia sensor networks: Applications and testbeds. Proceedings of the IEEE, 96(10), 1588–1605.

    Article  Google Scholar 

  11. Charfi, Y., Wakamiya, N., & Murata, M. (2009). Challenging issues in visual sensor networks. IEEE Wireless Communications, 16(2), 44–49.

    Article  Google Scholar 

  12. Piccardi, M. (2004). Background subtraction techniques: A review. In IEEE international conference on systems, man and cybernetics, pp. 3099–3104.

  13. Kenchannavar, H. H., Kudtarkar, S. S., & Kulkarni, U. P. (2010). Energy efficient data processing in visual sensor network. International Journal of CS & IT, 2(5), 151–160.

    Google Scholar 

  14. Vaidehi, V., Ramanathan, S., Sameer, N., & Sagar, S. (2011). Multiclass object detection system in imaging sensor network using haar-like features and joint-boosting algorithm. In International conference on recent trends in information technology (ICRTIT), pp. 1011–1015.

  15. Canclini, A., Baroffio, L., Cesana, M., Redondi, A., & Tagliasacchi, M. (2015). Object recognition in visual sensor networks based on compression and transmission of binary local features. In IEEE international conference on communication (ICC2015), pp. 1–3.

  16. Pham, D. M., & Aziz, S. M. (2013). Object extraction scheme and protocol for energy efficient image communication over wireless sensor networks. Computer Networks, 57(15), 2949–2960.

    Article  Google Scholar 

  17. Eriksson, E., Dán, G., & Fodor, V. (2014). Prediction-based load control and balancing for feature extraction in visual sensor networks. In IEEE international conference on acoustics, speech and signal processing (ICASSP), pp. 674–678.

  18. Redondi, A., Baroffio, L., Canclini, A., Cesana, M., & Tagliasacchi, M. (2013). A visual sensor network for object recognition: Testbed realization. In Proceedings of international conference on digital signal processing (DSP), pp. 1–6.

  19. Freund, Y., & Schapire, R. E. (1997). A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences, 55(1), 119–139.

    Article  MathSciNet  MATH  Google Scholar 

  20. Theocharides, T., Vijaykrishnan, N., & Irwin, M. J. (2006). A parallel architecture for hardware face detection. In IEEE computer society annual symposium on emerging VLSI technologies and architectures, pp. 452–453.

  21. Lienhart, R., & Maydt, J. (2002). An extended set of haar-like features for rapid object detection. In International conference on image processing, pp. 1–900.

  22. Mita, T., Kaneko, T., & Hori, O. (2005). Joint haar-like features for face detection. In Tenth IEEE international conference on computer vision, pp. 1619–1626.

  23. Wang, Y., Wang, D., & Fang, W. (2014). Automatic node selection and target tracking in wireless camera sensor networks. Computers & Electrical Engineering, 40(2), 484–493.

    Article  Google Scholar 

  24. Wang, Y., Tian, J., & Tan, Y. (2007). Effective Gaussian mixture learning and shadow suppression for video foreground segmentation. In International symposium on multispectral image processing and pattern recognition, international society for optics and photonics, pp. 67861D.

  25. Papa, G., Braca, P., Horn, S., Marano, S., Matta, V., & Willett, P. (2015, April). Adaptive Bayesian tracking with unknown time-varying sensor network performance. In IEEE international conference on acoustics, speech and signal processing (ICASSP), pp. 2534–2538.

  26. Vasuhi, S., & Vaidehi, V. (2016). Target tracking using interactive multiple model for wireless sensor network. Information Fusion, 27, 41–53.

    Article  Google Scholar 

  27. Khursheed, K., Imran, M., O’Nils, M., & Lawal, N. (2010). Exploration of local and central processing for a wireless camera based sensor node. In IEEE international conference on signals and electronic systems, pp. 147–150.

  28. Leutenegger, S., Chli, M., & Siegwart, R.Y. (2011). BRISK: Binary robust invariant scalable keypoints. In IEEE international conference on computer vision (ICCV), pp. 2548–2555.

  29. Redondi, A., Cesana, M., Tagliasacchi, M., Filippini, I., Dán, G., & Fodor, V. (2015). Cooperative image analysis in visual sensor networks. Ad Hoc Networks, 28, 38–51.

    Article  Google Scholar 

  30. Zhang, S., Wang, C., Chan, S. C., Wei, X., & Ho, C. H. (2015). New object detection, tracking, and recognition approaches for video surveillance over camera network. Sensors Journal, IEEE, 15(5), 2679–2691.

    Article  Google Scholar 

  31. Xu, D., Yi, R., Caron, F., & Doucet, A. (2016). Bayesian nonparametric image segmentation using a generalized Swendsen-Wang algorithm. arXiv:1602.03048, pp. 1–12.

  32. Wang, L., Ip, W. H., & Ting, J. S. (2016). Design of a radio frequency identification (RFID)-based monitoring and vehicle management system. In Wireless communications, networking and applications, pp. 537–551.

  33. Lee, J. S., Oh, J., Jun, J., & Jang, J. (2015). Wireless hydrogen smart sensor based on Pt/graphene-immobilized radio-frequency identification tag. ACS Nano, 9(8), 7783–7790.

    Article  Google Scholar 

  34. Viola, P., & Jones, M. (2001). Rapid object detection using a boosted cascade of simple features. In IEEE computer society conference on computer vision and pattern recognition, pp. I-511–I-518.

  35. He, K., Sun, J., & Tang, X. (2013). Guided image filtering. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(6), 1397–1409.

    Article  Google Scholar 

  36. Papageorgiou, C.P., Oren, M., & Poggio, T. (1998). A general framework for object detection. In Sixth IEEE international conference on computer vision, pp. 555–562.

  37. Schapire, R. E., Freund, Y., Bartlett, P., & Lee, W. S. (1998). Boosting the margin: A new explanation for the effectiveness of voting methods. Annals of Statistics, 26, 1651–1686.

    Article  MathSciNet  MATH  Google Scholar 

  38. Tieu, K., & Viola, P. (2004). Boosting image retrieval. International Journal of Computer Vision, 56(1–2), 17–36.

    Article  Google Scholar 

  39. Wu, J., Brubaker, S. C., Mullin, M. D., & Rehg, J. M. (2008). Fast asymmetric learning for cascade face detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 30(3), 369–382.

    Article  Google Scholar 

  40. Rowe, A., Goode, A., & Nourbakhsh, I. (2012). Cmucam3 datasheet. http://www.cmucam.org/documents/1.

  41. Heinzelman, W. R., Chandrakasan, A., & Balakrishnan, H. (2000). Energy-efficient communication protocol for wireless microsensor networks. In 33rd IEEE international conference on system sciences, pp. 1–10.

  42. Thorstensson, A., & Roberthson, H. (1987). Adaptations to changing speed in human locomotion: Speed of transition between walking and running. Acta Physiologica Scandinavica, 131(2), 211–214.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hadi S. Aghdasi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aghdasi, H.S., Yousefi, S. Enhancing lifetime of visual sensor networks with a preprocessing-based multi-face detection method. Wireless Netw 24, 1939–1951 (2018). https://doi.org/10.1007/s11276-017-1451-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-017-1451-z

Keywords

Navigation