Skip to main content
Log in

Power optimization and subcarrier allocation for downlink MIMO-OFDMA based cognitive radio networks

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

This paper presents a novel resource allocation framework for downlink transmissions in MIMO-OFDMA based cognitive radio (CR) networks. In this literature, due to the coexistence of primary and secondary users (SUs) in the same geographical area, the interference induced to the primary users’ (PUs) bands from SUs’ transmissions should be less than the tolerable interference threshold predefined by PU. Hence, the optimal resource allocation strategy is performed subject to the total power constraint in the cognitive base station and the interference power constraint for PUs so that the downlink sum throughput of the CR network can be maximize without causing unacceptable interference. To this aim, two sub-problems are presented and solved theoretically based on convex optimization framework that can be used in the main body of the proposed algorithm. Regarding to the first sub-problem, the resources are distributed among all SUs in a way that just the total power constraint is satisfied. Also, the sum throughput is maximized as the interference power onto the PUs’ bands keeps in a tolerable range in the second sub-problem. So, in order to find the optimum solution, our algorithm consists of three parts. The first two parts include these sub-problems while the last section includes a combination of them. For complexity reduction, two sub-optimal resource allocation algorithms are introduced based on the simplification of main problem constraints. The performance of different approaches is investigated via simulation. Conducted simulation results show that the optimal algorithm achieves better performance in comparison with benchmark algorithms and converges to sub-problem solutions in high and low regimes of interference thresholds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Mitola, J., & Maguire, G. Q. (1999). Cognitive radio: Making software radios more personal. IEEE Personal Communications, 6(4), 13–18.

    Article  Google Scholar 

  2. Wang, Beibei, & Liu, K. (2011). Advances in cognitive radio networks: A survey. IEEE Journal of Selected Topics in Signal Processing, 5(1), 5–23.

    Article  Google Scholar 

  3. Sharma, S. K., Bogale, T. E., Chatzinotas, S., Ottersten, B., Le, L. E., & Wang, X. (2015). Cognitive Radio Techniques Under Practical Imperfections: A Survey. IEEE Communications Surveys & Tutorials, 17(4), 1858–1884.

    Article  Google Scholar 

  4. Ngo, D. T., Tellambura, C., & Nguyen, H. H. (2010). Resource Allocation for OFDMA-based cognitive radio multicast networks with primary user activity consideration. IEEE Transactions on Vehicular Technology, 59(4), 1668–1679.

    Article  Google Scholar 

  5. Forouzan, N., & Ghorashi, S. A. (2014). New algorithm for joint subchannel and power allocation in multi-cell. IET Communications Journal, 8(4), 508–515.

    Article  Google Scholar 

  6. Tsiropoulos, G. I., Dobre, O. A., Ahmed, M. H., & Baddour, K. E. (2016). Radio Resource Allocation Efficient Spectrum Access in Cognitive Radio Networks. IEEE Communications Surveys & Tutorials, 18(1), 824–847.

    Article  Google Scholar 

  7. Zhu, F., Guo, Y., & Li, N. (2014). Efficient transceiver beamforming in multiple-input-multiple-output cognitive radio network. IET Communications Journal, 8(15), 2729–2736.

    Article  Google Scholar 

  8. Le, L. B., & Hossain, E. (2008). Efficient transceiver beamforming in multiple-input-multiple-output cognitive radio network. IEEE Transactions on Wireless Communications, 7(12), 5306–5315.

    Article  Google Scholar 

  9. Adian, M. G., & Aghaeinia, H. (2013). Optimal resource allocation for opportunistic spectrum access in multiple-input multiple-output-orthogonal frequency division multiplexing based cooperative cognitive radio networks. IET Signal Processing Journal, 7(7), 549–557.

    Article  MathSciNet  Google Scholar 

  10. Menon, R., Buehrer, R. M., & Reed, J. H. (2005). Outage probability based comparison of underlay and overlay spectrum sharing techniques, In IEEE International Conference DYSPAN, (pp. 101–109).

  11. Weiss, T., & Jondral, F. (2004). Spectrum pooling: An innovative strategy for the enhancement of spectrum efficiency. IEEE Communications Magazine, 42(3), 08–14.

    Article  Google Scholar 

  12. Berthold, U., Jondral, F., Brandes, S., & Schnell, M. (2007). OFDM-based overlay systems: A promising approach for enhancing spectral efficiency [Topics in radio communications]. IEEE Communications Magazine, 45(12), 52–58.

    Article  Google Scholar 

  13. Shahraki, H. S., & Mohamed-pour, Kamal. (2011). Power allocation in multiple-input multiple-output orthogonal frequency division multiplexing-based cognitive radio networks. IET Communications Journal, 5(3), 362–370.

    Article  Google Scholar 

  14. Peng, H., & Fujii, T (2012). Joint resource allocation and interference avoidance with fairness consideration for multi-cell cognitive radio networks, In IEEE Wireless Communications and Networking Conference (WCNC).

  15. Shams, F., Bacci, G., & Luise, M. (2014). A survey on resource allocation techniques in OFDM(A) networks. Computer Networks Journal, 65, 129–150.

    Article  Google Scholar 

  16. Andargoli, S. M. H., & Mohamed-pour, K. (2014). Cooperative resource allocation algorithms in cellular orthogonal frequency-division multiple access systems for target signal-to-interference plus noise ratio provision. IET Communications Journal, 8(9), 1488–1498.

    Article  Google Scholar 

  17. Telatar, E. (1999). Capacity of multi-antenna Gaussian channels. European Transactions on Telecommunications, 10(6), 585–595.

    Article  MathSciNet  Google Scholar 

  18. Farrokhi, F. R., Tassiulas, L., & Liu, K. (1998). Joint optimal power control and beamforming in wireless networks using antenna arrays. IEEE Transactions on Communications, 46, 1313–1323.

    Article  Google Scholar 

  19. Bukhari, S. H. R., Siraj, S., & Rehmani, M. H. (2016). PRACB: A Novel Channel Bonding Algorithm for Cognitive Radio Sensor Networks. IEEE Access, 4, 6950–6963.

    Article  Google Scholar 

  20. Janatian, N., Modarres-Hashemi, M., & Sun, S. (2016). Joint versus separate spectrum sensing and resource allocation in OFDMA-based cognitive radio networks. IET Communications journal, 10(7), 839–847.

    Article  Google Scholar 

  21. Shaat, M., & Bader, F. (2011). Efficient resource allocation algorithm for uplink in multicarrier-based cognitive radio networks with fairness consideration. IET Communications Journal, 5(16), 2328–2338.

    Article  MathSciNet  MATH  Google Scholar 

  22. Ahmad, A., Ahmad, S., Rehmani, M. H., & Hassan, N. U. (2015). A Survey on Radio Resource Allocation in Cognitive Radio Sensor Networks. IEEE Communications Surveys & Tutorials, 17(2), 888–917.

    Article  Google Scholar 

  23. Akan, O. B., Karli, O. B., & Ergul, O. (2009). Cognitive radio sensor networks. IEEE Network, 23(4), 34–40.

    Article  Google Scholar 

  24. Naeem, M., Anpalagan, A., Jaseemuddin, M., & Lee, D. C. (2014). Resource allocation techniques in cooperative cognitive radio networks. IEEE Communications Surveys & Tutorials, 16(2), 729–744.

    Article  Google Scholar 

  25. Bukhari, S. H. R., Rehmani, M. H., & Siraj, S. (2016). A survey of channel bonding for wireless networks and guidelines of channel bonding for futuristic cognitive radio sensor networks. IEEE Communications Surveys & Tutorials, 18(2), 924–948.

    Article  Google Scholar 

  26. Andargoli, S. M. H., & Mohamed-pour, K. (2012). Weighted sum throughput maximisation for downlink multicell orthogonal frequency-division multiple access systems by intercell interference limitation. IET Communications Journal, 6(6), 628–637.

    Article  MathSciNet  MATH  Google Scholar 

  27. Cover, T., & Thomas, J. A. (1991). Elements of information theory. New York: Wiley.

    Book  MATH  Google Scholar 

  28. Jang, J., & Lee, K. (2003). Transmit power adaptation for multiuser OFDM systems. IEEE Journal on Selected Areas in Communications, 21(2), 171–178.

    Article  MathSciNet  Google Scholar 

  29. Kivanc, D., Li, G., & Liu, H. (2003). Computationally efficient bandwidth allocation and power control for OFDMA. IEEE Transactions on Wireless Communications, 2(6), 1150–1158.

    Article  Google Scholar 

  30. Zhao, N., Yu, F. R., Sun, H., & Li, M. (2016). Adaptive Power Allocation Schemes for Spectrum Sharing in Interference-Alignment-Based Cognitive Radio Networks. IEEE Transactions on Vehicular Technology, 65(5), 3700–3714.

    Article  Google Scholar 

  31. Li, X., Zhao, N., Sun, Y., & Yu, F. R. (2016). Interference alignment based on antenna selection with channel state information in cognitive radio networks. IEEE Transactions on Vehicular Technology, 65(7), 5497–5511.

    Article  Google Scholar 

  32. Ren, Ju, Zhang, Yaoxue, Zhang, Ning, Zhang, Deyu, & Shen, Xuemin. (2016). Dynamic Channel Access to Improve Energy Efficiency in Cognitive Radio Sensor Networks. IEEE Transactions on Wireless Communications, 15(5), 3143–3156.

    Article  Google Scholar 

  33. Guoru, D., Wu, Q., Min, N., & Zhou, G. (2009). Adaptive resource allocation in multi-user OFDM-based Cognitive Radio systems, In International Conference on Wireless Communications & Signal Processing (WCSP).

  34. Googhari, M. S., Mohamed-pour, K., & Andargoli, S. M. H. (2012). Sum throughput maximization in multi-user OFDMA-based cognitive radio systems with secondary users rates requirements guarantee, In Sixth International Symposium on Telecommunications (IST), (pp. 158–163).

  35. Sadeghi, M., Andargoli, S. M. H., & Mohamed-pour, K. (2011). Power minimization in multi-user OFDMA-based cognitive radio systems with guaranteed throughput provision, In International Symposium on Telecommunications (IST), (pp. 470–475).

  36. Shahraki, H. S., & Mohamed-pour, K. (2011). Efficient Resource Allocation for MIMO-OFDMA based Cognitive Radio Networks, In Wireless Telecommunications Symposium (WTS), (pp. 1–6).

  37. Weiss, T., Hillenbrand, J., Krohn, A., Jondral, F. (2004). Mutual interference in ofdm-based spectrum pooling systems, IEEE 59th Vehicular Technology Conference (VTC) 4: (pp. 1873–1877).

  38. El-Absi, M., Shaat, M., Bader, F., & Kaiser, T. (2015). Interference alignment with frequency-clustering for efficient resource allocation in cognitive radio networks. IEEE Transactions on Wireless Communications, 14(12), 7070–7082.

    Article  Google Scholar 

  39. Monemi, Mehdi, Rasti, Mehdi, & Hossain, Ekram. (2015). On Joint Power and Admission Control in Underlay Cellular Cognitive Radio Networks. IEEE Transactions on Wireless Communications, 14(1), 265–278.

    Article  Google Scholar 

  40. Boyd, S., & Vandenberghe, L. (2003). Convex Optimization. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  41. Yu, W., & Lui, R. (2006). Dual methods for nonconvex spectrum optimization of multicarrier systems. IEEE Transactions on Communications, 54(7), 1310–1322.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Mehdi Hosseini Andargoli.

Appendices

Appendix 1

We want to find the optimal solution for the optimization problem given by (7). Due to the convexity of the problem (7) with regard to \(\left\{ {p_{{_{k,n,j} }}^{sub1} } \right\}\), the Lagrangian can be written as

$$\begin{aligned} & L\left( {\left\{ {p_{{_{k,n,j} }}^{sub1} } \right\} ,\left\{ {N_{k} } \right\} ,\left\{ {\mu_{k,n,j} } \right\} ,\lambda } \right) = \sum\limits_{k = 1}^{K} {\sum\limits_{{n \in N_{k} }} {\sum\limits_{j = 1}^{L} {{ \log }_{2} \left( {1 + \frac{{\varLambda^{2}_{k,n,j} p_{{_{k,n,j} }}^{sub1} }}{{\sigma^{2} }}} \right)} } } \\ & - \lambda \left( {\sum\limits_{k = 1}^{K} {\sum\limits_{{n \in N_{k} }} {\sum\limits_{j = 1}^{L} {p_{{_{k,n,j} }}^{sub1} - P_{T} } } } } \right) + \sum\limits_{k = 1}^{K} {\sum\limits_{{n \in N_{k} }} {\sum\limits_{j = 1}^{L} {\mu_{k,n,j} p_{{_{k,n,j} }}^{sub1} } } } \\ \end{aligned}$$
(27)

where \(\left\{ {\mu_{k,n,j} } \right\}\) and \(\lambda\) are non-negative Lagrangian multipliers for constraints or dual variables. Define the dual function

$$g\left( {\lambda ,\left\{ {\mu_{k,n,j} } \right\}} \right) = \mathop { \hbox{max} }\limits_{{\left\{ {p_{{_{k,n,j} }}^{sub1} } \right\} ,\left\{ {N_{k} } \right\}}} \left\{ {L\left( {\left\{ {p_{{_{k,n,j} }}^{sub1} } \right\}} \right)} \right\}$$
(28)

The Lagrangian dual problem can be expressed as

$$\begin{aligned} & \mathop { \hbox{min} }\limits_{{\lambda ,\left\{ {\mu_{k,n,j} } \right\}}} \left\{ {g\left( {\lambda ,\left\{ {\mu_{k,n,j} } \right\}} \right)} \right\} \\ & s.t.\;\lambda ,\left\{ {\mu_{k,n,j} } \right\} \ge 0 \\ \end{aligned}$$
(29)

The difference between the optimum solution and the solution obtained by dual problem is called the duality gap. Regardless of the convexity of the main problem, the dual problem is convex and the duality gap approaches zero when the number of subcarrier tends to infinity [41]. The KKT condition can be written as follows

$$\lambda \left( {\sum\limits_{k = 1}^{K} {\sum\limits_{{n \in N_{k} }}^{{}} {\sum\limits_{j = 1}^{L} {p_{{_{k,n,j} }}^{sub1\;*} - P_{T} } } } } \right) = 0$$
(30)
$$\sum\limits_{k = 1}^{K} {\sum\limits_{{n \in N_{k} }}^{{}} {\sum\limits_{j = 1}^{L} {\mu_{k,n,j} p_{{_{k,n,j} }}^{sub1\;*} } } } = 0$$
(31)
$$\sum\limits_{k = 1}^{K} {\sum\limits_{{n \in N_{k} }} {\sum\limits_{j = 1}^{L} {p_{{_{k,n,j} }}^{sub1} \le P_{T} } } }$$
(32)
$$p_{{_{k,n,j} }}^{sub1} \ge 0$$
(33)
$$\frac{\partial L}{{\partial p_{{_{k,n,j} }}^{sub1\;*} }} = \frac{{\varLambda^{2}_{k,n,j} }}{{{\text{ln(}}2 )\text{ }\left( {\sigma^{2} + \varLambda^{2}_{k,n,j} p_{{_{k,n,j} }}^{sub1\;*} } \right)}} - \lambda + \mu_{k,n,j} = 0$$
(34)

Rearranging the condition (34) we obtain

$$p_{{_{k,n,j} }}^{sub1\;*} = \left( {\frac{1}{{{\text{ln(}}2 )\text{ } (\lambda - \mu_{k,n,j} )}} - \frac{{\sigma^{2} }}{{\varLambda^{2}_{k,n,j} }}} \right)$$
(35)

Satisfying conditions (31) and (33), we obtain

$$p_{{_{k,n,j} }}^{sub1\;*} = \left( {\frac{1}{{\text{ln(2) (}\lambda \text{)}}} - \frac{{\sigma^{2} }}{{\varLambda^{2}_{k,n,j} }}} \right)^{ + }$$
(36)

where \(( {\text{x)}}^{ + } = {\text{max(x,}}0 )\). For satisfaction of condition (30), if inserting \(\lambda = 0\) in (36), the condition (32) will be violated. Thus, \(\lambda > 0\) is chosen to fulfill the total power constraint with equality \(\sum\limits_{k = 1}^{K} {\sum\limits_{{n \in N_{k} }} {\sum\limits_{j = 1}^{L} {p_{{_{k,n,j} }}^{sub1\;*} = P_{T} } } }\). The optimum value of \(\lambda\) can be found efficiently by iterative updating it utilizing bisection method until convergence of \(\lambda\). Therefore, we can obtain the optimal solution based on (36).

Appendix 2

Similar to Appendix 1. we want to find the optimal solution for the optimization problem given by (10). So, the Lagrangian of problem (10) can be defined as

$$\begin{aligned} & L\left( {\left\{ {p_{{_{k,n,j} }}^{sub2} } \right\} ,\left\{ {N_{k} } \right\} ,\left\{ {\varOmega_{k,n,j} } \right\} ,\varOmega } \right) = \sum\limits_{k = 1}^{K} {\sum\limits_{{n \in N_{k} }} {\sum\limits_{j = 1}^{L} {{ \log }_{2} \left( {1 + \frac{{\varLambda^{2}_{k,n,j} p_{{_{k,n,j} }}^{sub2} }}{{\sigma^{2} }}} \right)} } } \\ & \quad - \varOmega \left( {\sum\limits_{k = 1}^{K} {\sum\limits_{{n \in N_{k} }} {\sum\limits_{j = 1}^{L} {\left| {g_{n,j}^{\,l} } \right|^{2} p_{{_{k,n,j} }}^{sub2} I_{n,l} - I^{l} } } } } \right) + \sum\limits_{k = 1}^{K} {\sum\limits_{{n \in N_{k} }} {\sum\limits_{j = 1}^{L} {\varOmega_{k,n,j} p_{{_{k,n,j} }}^{sub2} } } } \\ \end{aligned}$$
(37)

where \(\left\{ {\varOmega_{k,n,j} } \right\}\) and \(\varOmega\) are the non-negative Lagrangian multipliers for constraints or dual variables. The dual function associated with (37) can be written as

$$g\left( {\varOmega ,\left\{ {\varOmega_{k,n,j} } \right\}} \right) = \mathop { \hbox{max} }\limits_{{\left\{ {p_{{_{k,n,j} }}^{sub2} } \right\} ,\left\{ {N_{k} } \right\}}} \left\{ {L\left( {\left\{ {p_{{_{k,n,j} }}^{sub2} } \right\}} \right)} \right\}$$
(38)

Therefore the dual problem is defined as

$$\begin{aligned} & \mathop { \hbox{min} }\limits_{{\varOmega ,\left\{ {\varOmega_{k,n,j} } \right\}}} \left\{ {g\left( {\varOmega ,\left\{ {\varOmega_{k,n,j} } \right\}} \right)} \right\} \\ & s.t.\;\varOmega ,\left\{ {\varOmega_{k,n,j} } \right\} \ge 0 \\ \end{aligned}$$
(39)

Regardless of the convexity of the main problem, the dual problem is convex and the duality gap approaches zero when the number of subcarrier tends to infinity [41]. Then, the KKT condition can be written as follows

$$\varOmega \left( {\sum\limits_{k = 1}^{K} {\sum\limits_{{n \in N_{k} }} {\sum\limits_{j = 1}^{L} {\left| {g_{n,j}^{\,l} } \right|^{2} p_{{_{k,n,j} }}^{sub2\;*} I_{n,l} - I^{l} } } } } \right) = 0$$
(40)
$$\sum\limits_{k = 1}^{K} {\sum\limits_{{n \in N_{k} }} {\sum\limits_{j = 1}^{L} {\varOmega_{k,n,j} p_{{_{k,n,j} }}^{sub2\;*} } } } = 0$$
(41)
$$\sum\limits_{k = 1}^{K} {\sum\limits_{{n \in N_{k} }} {\sum\limits_{j = 1}^{L} {\left| {g_{n,j}^{\,l} } \right|^{2} p_{{_{k,n,j} }}^{sub2} I_{n,l} \le I^{l} } } }$$
(42)
$$p_{{_{k,n,j} }}^{sub2} \ge 0$$
(43)
$$\frac{\partial L}{{\partial p_{{_{k,n,j} }}^{sub2\;*} }} = \frac{{\varLambda^{2}_{k,n,j} }}{{{\text{ln(}}2 )\text{ }\left( {\sigma^{2} + \varLambda^{2}_{k,n,j} p_{{_{k,n,j} }}^{sub2\;*} } \right)}} - \varOmega \left| {g_{n,j}^{l} } \right|^{2} I_{n,l} + \varOmega_{k,n,j} = 0$$
(44)

Rearranging the condition (44) we obtain

$$p_{{_{k,n,j} }}^{sub2\;*} = \left( {\frac{1}{{{\text{ln(}}2 )\text{ }\left( {\varOmega \left| {g_{n,j}^{l} } \right|^{2} I_{n,l} - \varOmega_{k,n,j} } \right)}} - \frac{{\sigma^{2} }}{{\varLambda^{2}_{k,n,j} }}} \right)$$
(45)

Satisfying conditions (41) and (43), we obtain

$$p_{{_{k,n,j} }}^{sub2\;*} = \left( {\frac{1}{{{\text{ln(}}2 )\left( {\varOmega \left| {g_{n,j}^{\,l} } \right|^{2} I_{n,l} } \right)}} - \frac{{\sigma^{2} }}{{\varLambda^{2}_{k,n,j} }}} \right)^{ + }$$
(46)

where \(( {\text{x)}}^{ + } = {\text{max(x,}}0 )\). For satisfaction of condition (40), if inserting \(\varOmega = 0\) in (46), the condition (42) will be violated. Thus, \(\varOmega > 0\) is chosen to fulfill the interference power constraint with equality as \(\sum\limits_{k = 1}^{K} {\sum\limits_{{n \in N_{k} }} {\sum\limits_{j = 1}^{L} {\left| {g_{n,j}^{\,l} } \right|^{2} I_{n,l} p_{{_{k,n,j} }}^{sub2\;*} = I^{l} } } }\). The optimum value of \(\varOmega\) can be found efficiently by iterative updating it utilizing bisection method until convergence of \(\varOmega\). Therefore, we can obtain the optimal solution based on (46).

Appendix 3

Proof:

Based on the theorem 2, the problem (6) should be solved with jointly satisfaction of two constraints. Therefore, the Lagrangian will be derived as

$$\begin{aligned} & L\left( {\left\{ {p_{k,n,j} } \right\} ,\left\{ {N_{k} } \right\} ,\left\{ {\mu_{k,n,j} } \right\} ,\lambda_{1} ,\lambda_{2} } \right) = \sum\limits_{k = 1}^{K} {\sum\limits_{{n \in N_{k} }} {\sum\limits_{j = 1}^{L} {{ \log }_{2} \left( {1 + \frac{{\varLambda^{2}_{k,n,j} p_{k,n,j} }}{{\sigma^{2} }}} \right)} } } \\ & \quad - \lambda_{\,1} \left( {\sum\limits_{k = 1}^{K} {\sum\limits_{{n \in N_{k} }} {\sum\limits_{j = 1}^{L} {p_{k,n,j} - P_{T} } } } } \right) - \lambda_{\,2} \left( {\sum\limits_{k = 1}^{K} {\sum\limits_{{n \in N_{k} }} {\sum\limits_{j = 1}^{L} {\left| {g_{n,j}^{\,l} } \right|^{2} p_{{_{k,n,j} }} I_{n,l} - I^{l} } } } } \right) \\ & \quad + \sum\limits_{k = 1}^{K} {\sum\limits_{{n \in N_{k} }} {\sum\limits_{j = 1}^{L} {\mu_{k,n,j} p_{k,n,j} } } } \\ \end{aligned}$$
(47)

where \(\left\{ {\mu_{k,n,j} } \right\}\), \(\lambda_{1}\) and \(\lambda_{2}\) are the non-negative Lagrangian multipliers for constraints. The dual function and dual problem can be defined as

$$g\left( {\lambda_{1} ,\lambda_{2} ,\left\{ {\mu_{k,n,j} } \right\}} \right) = \mathop { \hbox{max} }\limits_{{\left\{ {p_{k,n,j} } \right\} ,\left\{ {N_{k} } \right\}}} \left\{ {L\left( {\left\{ {p_{k,n,j} } \right\}} \right)} \right\}$$
(48)
$$\begin{aligned} \mathop { \hbox{min} }\limits_{{\lambda_{1} ,\lambda_{2} ,\left\{ {\mu_{k,n,j} } \right\}}} \left\{ {g (\lambda_{1} ,\lambda_{2} ,\left\{ {\mu_{k,n,j} } \right\}} \right\} )\hfill \\ s.t.\;\lambda_{1} ,\lambda_{2} ,\left\{ {\mu_{k,n,j} } \right\} \ge 0 \hfill \\ \end{aligned}$$
(49)

Similar to previous appendixes, by deriving the KKT conditions for dual problem, the following terms should be satisfied

$$\begin{aligned} & (1 )\text{ }\lambda_{1} \left( {\sum\limits_{k = 1}^{K} {\sum\limits_{{n \in N_{k} }} {\sum\limits_{j = 1}^{L} {p_{{_{k,n,j} }}^{*} - P_{T} } } } } \right) = 0 \\ & (2 )\text{ }\lambda_{2} \left( {\sum\limits_{k = 1}^{K} {\sum\limits_{{n \in N_{k} }} {\sum\limits_{j = 1}^{L} {\left| {g_{n,j}^{\,l} } \right|^{2} p_{{_{k,n,j} }}^{*} I_{n,l} - I^{l} } } } } \right) = 0 \\ & (3 )\text{ }\mu_{k,n,j} p_{{_{k,n,j} }}^{*} = 0 \\ & (4 )\text{ }\frac{\partial L}{{\partial p_{{_{k,n,j} }}^{*} }} = 0 \\ \end{aligned}$$
(50)

Now, by satisfying the two last conditions (3) and (4) in (50), the allocated power to user k on the subcarrier n and jth spatial subchannel can be specified as

$$\text{ }p_{{_{k,n,j} }}^{*} = \left( {\frac{1}{{{\text{ln(}}2 )\text{ } (\lambda_{1} + \lambda_{2} \left| {g_{n,j}^{l} } \right|^{2} I_{n,l} )}} - \frac{{\sigma^{2} }}{{\varLambda^{2}_{k,n,j} }}} \right)^{ + }$$
(51)

However, there are still two unaddressed conditions (1) and (2) in (50). Hence, the following cases are considered to solve these conditions.

$$\text{ }\lambda_{1} = 0,\;\sum\limits_{k = 1}^{K} {\sum\limits_{{n \in N_{k} }} {\sum\limits_{j = 1}^{L} {p_{{_{k,n,j} }}^{*} < P_{T} } } }$$
(52)
$$\text{ }\lambda_{1} > 0,\;\sum\limits_{k = 1}^{K} {\sum\limits_{{n \in N_{k} }} {\sum\limits_{j = 1}^{L} {p_{{_{k,n,j} }}^{*} = P_{T} } } }$$
(53)
$$\text{ }\lambda_{2} = 0,\;\sum\limits_{k = 1}^{K} {\sum\limits_{{n \in N_{k} }} {\sum\limits_{j = 1}^{L} {\left| {g_{n,j}^{l} } \right|^{2} p_{{_{k,n,j} }}^{*} I_{n,l} < I^{l} } } }$$
(54)
$$\text{ }\lambda_{2} > 0,\;\sum\limits_{k = 1}^{K} {\sum\limits_{{n \in N_{k} }} {\sum\limits_{j = 1}^{L} {\left| {g_{n,j}^{l} } \right|^{2} p_{{_{k,n,j} }}^{*} I_{n,l} = I^{l} } } }$$
(55)

As the power values depend on the values of \(\lambda_{1}\) and \(\lambda_{2}\), the optimal solution needs a search over these values which must be updated jointly. If \(\lambda_{1} = 0\) and \(\lambda_{2} > 0\), the optimal solution is determined based on sub-problem 2. Similarly, if \(\lambda_{2} = 0\) and \(\lambda_{1} > 0\), the optimal solution is defined based on the sub-problem 1 which has been expressed in the previous section. On the other hand, according to (50) the conditions (52) and (54) cannot be satisfied jointly. Therefore, in order to satisfy (53) and (54), the optimal values of \(\lambda_{\,1}\) and \(\lambda_{\,2}\) are chosen to meet jointly the total power and interference constraints with equalities \(\sum\limits_{k = 1}^{K} {\sum\limits_{{n \in N_{k} }} {\sum\limits_{j = 1}^{L} {\left| {g_{n,j}^{l} } \right|^{2} p_{{_{k,n,j} }}^{*} I_{n,l} = I^{l} } } }\) and \(\sum\limits_{k = 1}^{K} {\sum\limits_{{n \in N_{k} }} {\sum\limits_{j = 1}^{L} {p_{{_{k,n,j} }}^{*} = P_{T} } } }\). This can be efficiently done by iterative updating these values using an ellipsoid or subgradient-based method [16]. To the best of our knowledge, the ellipsoid search is one of the best methods which can be applied while its complexity and convergence rate is desired [17]. Here, the power is allocated based on (51) and the subcarrier allocation can be performed based on per subcarrier optimization problem as follows

$$\kappa_{n} = \mathop {{ \arg }\;{ \hbox{max} }}\limits_{k} \;\left\{ {\sum\limits_{j = 1}^{L} {{ \log }_{2} \left( {1 + \frac{{\varLambda_{{_{k,n,j} }}^{2} p_{{_{k,n,j} }}^{*} }}{{\sigma^{2} }}} \right) - \sum\limits_{j = 1}^{L} {\left( {\lambda_{1} + \lambda_{2} \left| {g_{n,j}^{\,l} } \right|^{2} I_{n,l} } \right)p_{{_{k,n,j} }}^{*} } } } \right\}$$
(56)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadi, M., Andargoli, S.M.H. Power optimization and subcarrier allocation for downlink MIMO-OFDMA based cognitive radio networks. Wireless Netw 24, 2221–2235 (2018). https://doi.org/10.1007/s11276-017-1463-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-017-1463-8

Keywords

Navigation