Skip to main content

Advertisement

Log in

Novel sensing and joint beam and null steering based resource allocation for cross-tier interference mitigation in cognitive femtocell networks

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Cognitive radios and femtocell networks are gaining much popularity due to the formers ability to carry out unlicensed transmission in licensed bands and the latter’s ability to increase the indoor capacity by bringing the transmitter and receiver closer to each other. The combination of the two provides us with a joint benefit of unlicensed transmission and increased system capacity. However, deployments of such cognitive radio based femtocell networks (CRFN) can pose some severe cross-tier interference towards the primary system. In this paper, we propose a novel spectrum sensing technique based on Uniform Linear array (ULA) combined with Genetic Algorithm to detect not only the presence of a Primary user but also estimate its parameters such as range, frequency, angle of arrival and amplitude. Furthermore, a joint beamforming and null steering technique is proposed to maximize the signal to interference plus noise ratio (SINR) towards the secondary user equipment (SUE) while minimizing the interference towards the primary Base Station (PBS). We are reutilizing the sensed uplink (UL) frequency of the Primary users for the downlink (DL) transmission; the cognitive femtocell base station (CFBS) calculates such weight vector that aims at sending the maximum signal power towards the femto user and null in the direction of PBS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Chandrasekhar, V., Andrews, J., & Gatherer, A. (2008). Femtocell networks: A survey. IEEE Communication Magazine, 46(9), 59–67.

    Article  Google Scholar 

  2. Tariq, F., Dooley, L. S., & Poulton, A. S. (2014). An interference-aware virtual clustering paradigm for resource management in cognitive femtocell networks. ELSEVIER Computer and Electrical Engineering, 40(2), 587–598.

    Article  Google Scholar 

  3. Li, W., Zhang, H., Su, T., & Wen, X. (2012). Energy efiicient resource allocation with interference mitigation for two-tier OFDMA femtocell networks. In IEEE international sysmposium on personal, indoor and mobile radio communications.

  4. Zhang, H. (2013). 4G Femtocells: Resource allocation and interference management, Springer, ISBN: 978-1-4614-9080-7.

  5. Jing, W., Lu, Z., Zhang, H., Zhang, Z., Zhao, J., & Wen, X. (2014). Energy saving resource allocation scheme with QoS provisioning in OFDMA femtocell networks. In ICC workshop on energy efficiency in wireless networks.

  6. Zhang, H., Jiang, C., Beaulieu, N. C., Chu, X., Wen, X., & Tao, M. (2014). Resource allocation in spectrum-sharing OFDMA femtocells with heterogeneous services. IEEE Transactions on Communications, 62(7), 2366–2377.

    Article  Google Scholar 

  7. Zhang, Z., Zhang, H., Liu, H., Jing, W., & Wen, X. (2013). Energy efficient resource optimization in spectrum sharing two-tier femtocell networks. In IEEE international conference on communications.

  8. Zhang, H., Chu, X., Guo, W., & Wang, S. (2015). Coexistence of wifi and heterogeneous small cell networks sharing unlicensed spectrum. IEEE Communications Magazine, 53(3), 158–164.

    Article  Google Scholar 

  9. Zhang, H., Chu, X., Ma, W., Zheng, W., & Wen, X. (2012). Resource allocation with interference mitigation in OFDMA femtocells for co-channel deployment. EURASIP Journal on Wireless Communications and Networking. doi:10.1186/1687-1499-2012-289.

    Google Scholar 

  10. Zheng, W., Su, T., Zhang, H., Li, W., Chu, X., & Wen, X. (2014). Distributed power optimization for spectrum-sharing femtocell networks: A fictitious game approach. Journal of Network and Computer Applications, 37, 315–322.

    Article  Google Scholar 

  11. Mitola, J. III. (2000). Cognitive radio: An integrated agent architecture for software defined radio, Ph.D. Thesis, KTH Royal Institute of Technology, Sweden.

  12. Tan, C. K., Chuah, T. C., & Tan, S. W. (2016). Resource allocation for OFDMA-based multicast cognitive radio networks using a Stackelberg pricing game. ELSEVIER Computer Communications, 88, 57–72.

    Article  Google Scholar 

  13. Yucek, T., & Arslan, H. (2009). A survey of spectrum sensing algorithms for cognitive radio applications. IEEE Communications surveys and Tutorials, 11(1), 116–130.

    Article  Google Scholar 

  14. Huag, L., & Zhu, G. (2013). Cognitive femtocell networks: An opportunistic spectrum access for future indoor wireless coverage. IEEE Wireless Communications, 20(2), 44–51.

    Article  Google Scholar 

  15. Gur, G., Bayhan, S., & Alagoz, F. (2010). Cognitive femtocell networks: An overlay architecture for localized dynamic spectrum access. IEEE Wireless Communications, 17(4), 62–70.

    Article  Google Scholar 

  16. Zhang, H., Nie, Y., Cheng, J., Leung, V., & Nallanathan, A. (2016). Sensing time optimization and power control for energy efficient cognitive small cell with imperfect hybrid spectrum sensing. IEEE Transactions on Wireless Communications. doi:10.1109/TWC.2016.2628821.

    Google Scholar 

  17. Zhang, H., Jiang, C., Mao, X., & Chen, H. (2016). Interference-limited resource optimization in cognitive femtocells with fairness and imperfect spectrum sensing. IEEE Transactions on Vehicular Technology, 65(3), 1761–1771.

    Article  Google Scholar 

  18. Zhang, H., Jiang, C., Beaulieu, N. C., Chu, X., Wang, X., & Quek, T. Q. S. (2015). Resource allocation for cognitive small cell networks: A cooperative bargaining game theoretic approach. IEEE Transactions on Wireless Communications, 14(6), 3481–3493.

    Article  Google Scholar 

  19. Bartoli, G., Fantacci, R., Lataief, K. B., & Marabissi, D. (2014). Beamforming for small cell deployment in LTE-Advanced and beyond. IEEE Wireless Communications, 21(2), 50–56.

    Article  Google Scholar 

  20. Chen, G., Zheng, J., & Shen, L. (2016). A preset threshold based cross-tier handover algorithm for uplink co-channel interference mitigation in two-tier femtocell networks. Wireless Networks, 22(6), 1819–1835.

    Article  Google Scholar 

  21. Jacob, P., James, A., & Madhukumar, A. S. (2015). Interference mitigation through reverse frequency allocation in multi-tier cellular network: A downlink perspective. Wireless Networks, 21(5), 1613–1629.

    Article  Google Scholar 

  22. Bartoli, G., Fantacci, R., Marabissi, D., & Pucci, M. (2014). Angular interference suppression in cognitive LTE-A femtocells. In International Wireless Communications and Mobile Computing Conference (IWCMC), pp. 979–984.

  23. Bartoli, G., Fantacci, R., Marabissi, D., & Pucci, M. (2014). Resource allocation schemes for cognitive LTE-A femto cells using zero forcing beamforming and users selection. IEEE Globecom, 3447–3452. doi:10.1109/GLOCOM.2014.7037341.

  24. Li, D., Guo, C., Zeng, Z., & Lin, X. (2014). Dynamic Spectrum sharing for TD-LTE and FD-LTE users based on joint polarization adaptation and beamforming. In IEEE 79th Vehicular Technology Conference (VTC Spring) (pp. 1–5). doi:10.1109/VTCSpring.2014.7022896.

  25. Park, H., & Hwang, T. (2014). Optimal beamforming and power allocation for cognitive femto base stations based on soft decision. IEEE Journal on Selected Areas in Communications, 33(5), 878–895.

    Article  Google Scholar 

  26. Zhang, D., Gao, H., Su, X., & Lv, T. (2015). Joint femtocell clustering and selective beamforming for interference mitigation in heterogeneous networks. In IEEE Symposium on Wireless Communications Systems (pp. 1–6). doi:10.1109/ICCChina.2015.7448698.

  27. Husso, M., Hamalainen, J., Jantti, R., Li, J., Mutafungwa, E., Wichman, R., Zheng, Z., & Wyglinski, A. M. (2010). Interference mitigation by practical transmit beamforming methods in closed femto cells. EURASIP Journal on Wireless Communications and Networking, 1–12. doi:10.1155/2010/186815.

  28. Khederzadeh, R., & Farrokhi, H. (2015). Optimal and suboptimal adaptive algorithms for rate and power transmission in OFDM-based Cognitive Radio systems. ELSEVIER Computer and Electrical Engineering, 42, 168–177.

    Article  Google Scholar 

  29. Lopez, D., Valcarce, A., Ladányi, Á., Roche, G., & Zhang, J. (2010). Intracell handover for interference and handover mitigation in OFDMA two-tier macrocell-femtocell networks. EURASIP Journal of Wireless Communication Networks. doi:10.1155/2010/142629.

    Google Scholar 

  30. Zaman, F., Khan, S. U., Ashraf, K., & Qureshi, I. M. (2014). An application of hybrid differential evolution to 3-D near field source localization. IBCAST, 474–477. doi:10.1109/IBCAST.2014.6778191.

  31. Salman, A., Qureshi, I. M., Sultan, K., & Saeed, S. (2015). Joint spectrum sensing for detection of primary users using cognitive relays with evolutionary computing. IET Communications. doi:10.1049/iet-com.2014.1170.

    Google Scholar 

  32. Husso, M., Zheng, Z., Hamalainen, J., & Mutafungwa, E. (2010). Dominant interferer mitigation in closed femtocell deployment. In IEEE international symposium on personal, Indoor and Mobile Radio Communications Workshops.

  33. Sung, K. W., Haas, H. & McLaughlin, S. (2010). A semianalytical PDF of downlink SINR for femtocell networks. EURASIP Journal on Wireless Communications and Networking, 1–9.

  34. Fenton, L. F. (1960). The sum of log-normal distributions in scatter transmission systems. IRE Transactions on communications systems, 8(1), 57–67.

    Article  Google Scholar 

  35. Ji, J., Chen, W., & Suri, S. (2013). Asymptotic throughput analysis of random beamforming for multi-antenna cognitive broadcast networks. IET Communications, 7(14), 1550–1556.

    Article  Google Scholar 

  36. Pateromichelakis, E., Shariat, M., Quddos, A. U., & Tafazolli, R. (2011). On the analysis of co-tier interference in femtocells. In IEEE international symposium on personal, Indoor and Mobile radio communications (pp. 122–126). doi:10.1109/PIMRC.2011.6139696.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayesha Salman.

Appendices

Appendix 1: derivation of PDF of a ratio of two lognormal RVs

Suppose we define a random variable Z that is a function of two random variables, as follows

$$Z = \frac{X}{Y}$$

where both \(X\) and \(Y\) are independent log- normal distributed random variables. The PDF of \(Z\) is given by

$$f_{Z} (z) = \int y f_{X} (yz)f_{Y} (y)dy$$

Mean value of X and Y are denoted by \(\mu_{X}\) and \(\mu_{Y}\) respectively. We suppose that both X and Y have same variance denoted by \(\sigma\), that is \(\sigma_{X}^{2} = \sigma_{Y}^{2} = \sigma^{2} .\)

$$\begin{aligned} f_{Z} (z) = \int {y\frac{1}{{\sqrt {2\pi } yz\sigma }}\text{e}^{{\frac{{ - (\ln yz - \mu_{X} )^{2} }}{{2\sigma^{2} }}}} \times \frac{1}{{\sqrt {2\pi } y\sigma }}\text{e}^{{\frac{{ - (\ln y - \mu_{Y} )^{2} }}{{2\sigma^{2} }}}} dy} \hfill \\ \quad let\ln y = v\;{\text{and}}\;\ln z = u \hfill \\ \end{aligned}$$

Thus after changing the variables, the PDF is written as

$$\begin{aligned} f_{Z} (z) = & \frac{1}{{2\pi z\sigma^{2} }}\int {\text{e}^{{\frac{{ - (v + u - \mu_{X} )^{2} }}{{2\sigma^{2} }}}} \text{e}^{{\frac{{ - (v - \mu_{Y} )^{2} }}{{2\sigma^{2} }}}} dv} \\ \, = & \frac{1}{{2\pi z\sigma^{2} }}\int {\text{e}^{{\frac{ - 1}{{2\sigma^{2} }}(u^{2} + \mu_{X}^{2} + \mu_{Y}^{2} - 2\mu_{X} u)}} e^{{\frac{ - 1}{{2\sigma^{2} }}(2v^{2} + 2v(u - (\mu_{X} + \mu_{Y} ))}} } dv\quad let \, u - (\mu_{X} + \mu_{Y} ) = \alpha \\ f_{Z} (z) = & \frac{1}{{2\pi z\sigma^{2} }}\int {\text{e}^{{\frac{ - 1}{{2\sigma^{2} }}(u^{2} + \mu_{X}^{2} + \mu_{Y}^{2} - 2\mu_{X} u)}} e^{{\frac{ - 1}{{2\sigma^{2} }}(2v^{2} + 2v\alpha )}} } dv \\ \end{aligned}$$

Taking independent terms outside the integral we get,

$$f_{Z} (z) = \frac{1}{{2\pi z\sigma^{2} }}\text{e}^{{\frac{ - 1}{{2\sigma^{2} }}(u^{2} + \mu_{X}^{2} + \mu_{Y}^{2} - 2\mu_{X} u)}} \int {e^{{\frac{ - 1}{{\sigma^{2} }}((v + \alpha /2)^{2} }} e^{{\frac{{\alpha^{2} }}{{4\sigma^{2} }}}} } dv.$$

Again applying the change of variable,

$$\begin{aligned} \, \left( {\frac{v + \alpha /2}{\sigma }} \right) = & \frac{s}{\sqrt 2 } \\ f_{Z} (z) = & \frac{1}{2\sqrt \pi z\sigma }\text{e}^{{\frac{ - 1}{{2\sigma^{2} }}(u^{2} + \mu_{X}^{2} + \mu_{Y}^{2} - 2\mu_{X} u)}} e^{{\frac{{\alpha^{2} }}{{4\sigma^{2} }}}} \frac{1}{{\sqrt {2\pi } }}\int\limits_{ - \infty }^{\infty } {e^{{ - s^{2} /2}} } ds \\ \end{aligned}$$
$$\begin{aligned} \, = & \frac{1}{2\sqrt \pi z\sigma }\text{e}^{{\frac{ - 1}{{4\sigma^{2} }}(2u^{2} + 2\mu_{X}^{2} + 2\mu_{Y}^{2} - 4\mu_{X} u - \alpha^{2} )}} \, \because \frac{1}{{\sqrt {2\pi } }}\int\limits_{ - \infty }^{\infty } {e^{{ - s^{2} /2}} } ds = 1 \\ \, = & \frac{1}{2\sqrt \pi z\sigma }\text{e}^{{\frac{ - 1}{{4\sigma^{2} }}(u^{2} + \mu_{X}^{2} + \mu_{Y}^{2} - 2\mu_{X} u - 2\mu_{X} \mu_{Y} + 2\mu_{Y} u)}} \\ \, = & \frac{1}{2\sqrt \pi z\sigma }\text{e}^{{\frac{ - 1}{{4\sigma^{2} }}(u - (\mu_{X} - \mu_{Y} ))^{2} }} \\ \, = & \frac{1}{{\sqrt {2\pi } z(\sqrt 2 \sigma )}}\text{e}^{{\frac{{ - (\ln z - (\mu_{X} - \mu_{Y} ))^{2} }}{{2(\sqrt 2 \sigma )^{2} }}}} . \\ \end{aligned}$$
(18)

As it can be seen that it is log-normal distribution with mean value \(\mu_{X} - \mu_{Y}\) and variance \(\sigma^{{{\prime }2}} = 2\sigma^{2} = \sigma_{X}^{2} = \sigma_{Y}^{2}\)

Appendix 2: derivation of average rate

The expected value of a random variable is given as

$$E[X] = \int\limits_{0}^{\infty } {x \, f_{X} } (x)dx.$$

Since rate is given by \(\log_{2} (1 + SINR)\). Where SNR is denoted by \(\gamma\). Hence the average rate will be given as

$$R_{av} = \int\limits_{0}^{\infty } {\log_{2} } (1 + \gamma ) \, f_{\gamma } (\gamma ) \, d\gamma$$
(19)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salman, A., Qureshi, I.M., Saleem, S. et al. Novel sensing and joint beam and null steering based resource allocation for cross-tier interference mitigation in cognitive femtocell networks. Wireless Netw 24, 2205–2219 (2018). https://doi.org/10.1007/s11276-017-1465-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-017-1465-6

Keywords

Navigation