Skip to main content
Log in

Optimal control overhead based multi-metric routing for MANET

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

During the last two decades, there has been a tremendous growth in the use of MANETs, not only due to the development of the technology but also due to their high flexibility. MANETs have challenges and limitations and among the major challenge is the routing process because of high dynamic topology and distributed nature. This is the main reason for quick depletion of network resources. Thus, there is a need to develop a routing protocol to fulfill various application requirements and enhance routing paths according to the topology change. In this paper, two protocols are proposed in order to optimally utilize the constrained network resources and reliably detect high-quality links. They are Hybrid Geo-cast Routing (HGR) protocol and Signal Strength and Congestion Avoidance protocol (SSCA). The optimal and adaptive HGR protocol utilizes geographical location information to limit search area during route discovery process by including only promising search paths to minimize control overhead. Meanwhile, adaptive SSCA uses SSCA mechanism in order to enhance link and node quality detection and reduce packet drop. The experimental results show that the proposed HGR protocol is able to reduce up to 46.67% control overhead. Meanwhile, the proposed adaptive SSCA protocol reduces packet drop to 71.20%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Adarbah, H. Y., Ahmad, S., & Duffy, A. (2015). Impact of noise and interference on probabilistic broadcast schemes in mobile ad-hoc networks. Computer Networks, 88, 178–186.

    Article  Google Scholar 

  2. Agrawal, D., & Zeng, Q.-A. (2015). Introduction to wireless and mobile systems. Boston: Cengage Learning.

    Google Scholar 

  3. Alnajjar, F. (2011). SNR/RP aware routing model for manets. City College and Graduate Center of City University of New York, Multidisciplinary Journals in Science and Technology, Journal of Selected Areas in Telecommunications (JSAT), March Edition.

  4. Blazevic, L., Le Boudec, J.-Y., & Giordano, S. (2005). A location-based routing method for mobile ad hoc networks. IEEE Transactions on Mobile Computing, 4(2), 97–110.

    Article  Google Scholar 

  5. Brandenburg, A. (2001). The inverse cascade and nonlinear alpha-effect in simulations of isotropic helical hydromagnetic turbulence. Astrophysical Journal, 550, 824–840. doi:10.1086/319783.

    Article  Google Scholar 

  6. Calvert, K. L., Bhattacharjee, S., Zegura, E., & Sterbenz, J. (1998). Directions in active networks. IEEE Communications Magazine, 36(10), 72–78.

    Article  Google Scholar 

  7. Cheng, S.-T., Li, J.-P., & Horng, G.-J. (2013). An adaptive cluster-based routing mechanism for energy conservation in mobile ad hoc networks. Wireless Personal Communications, 70(2), 561–579.

    Article  Google Scholar 

  8. Cui, J.-H., Kong, J., Gerla, M., & Zhou, S. (2006). The challenges of building mobile underwater wireless networks for aquatic applications. IEEE Network, 20(3), 12–18.

    Article  Google Scholar 

  9. Dressler, F., Kargl, F., Ott, J., Tonguz, O. K., & Wischhof, L. (2011). Research challenges in intervehicular communication: Lessons of the 2010 Dagstuhl Seminar. IEEE Communications Magazine, 49(5), 158–164.

    Article  Google Scholar 

  10. Dube, R., Rais, C. D., Wang, K.-Y., & Tripathi, S. K. (1997). Signal stability based adaptive routing (SSA) for ad hoc mobile networks. IEEE Personal Communications, 4(1), 36–45.

    Article  Google Scholar 

  11. Hanashi, A. M., Siddique, A., Awan, I., & Woodward, M. (2009). Performance evaluation of dynamic probabilistic broadcasting for flooding in mobile ad hoc networks. Simulation Modelling Practice and Theory, 17(2), 364–375.

    Article  Google Scholar 

  12. He, T., Huang, C., Blum, B. M., Stankovic, J. A., & Abdelzaher, T. (2003). Range-free localization schemes for large scale sensor networks. In Proceedings of the 9th annual international conference on mobile computing and networking (pp. 81–95), ACM.

  13. Hnatyshin, V. (2013). Improving MANET routing protocols through the use of geographical information. International Journal of Wireless and Mobile Networks (IJWMN), 5(2), 1–19.

  14. Hou, T.-C., & Li, V. O. K. (1986). Transmission range control in multihop packet radio networks. IEEE Transactions on Communications, 34(1), 38–44.

    Article  MathSciNet  Google Scholar 

  15. Hwang, D., & Kim, D. (2008). DFR: Directional flooding-based routing protocol for underwater sensor networks. In Oceans 2008 (p. 17), IEEE.

  16. Jarupan, B., & Ekici, E. (2010). Prompt: A cross-layer position-based communication protocol for delay-aware vehicular access networks. Ad Hoc Networks, 8(5), 489–505.

    Article  Google Scholar 

  17. Jiang, M., Ji, J., Tay, Y. C. (1999). Cluster based routing protocol, Internet Draft, draft-ietf-anet-cbrp-spec-01.txt, work in progress.

  18. Kasemann, M., Hartenstein, H., Fuler, H., Mauve, M., et al. (2002). Analysis of a location service for position-based routing in mobile ad hoc networks. In Proceedings of the 6th Annual ACM/IEEE International Conference on Mobile Computing and Networking (pp. 121–133).

  19. Khazi, S., Mungara, J., & Raghavendra Prasad, S. G. (2015). Efficient packet delivery framework using geo-cast routing approach for a vehicular ad-hoc network (VANET). In IJITR.

  20. Kranakis, E., Singh, H., & Urrutia, J. (1999). Compass routing on geometric networks. In Proceedings of 11th Canadian conference on computational geometry. Citeseer.

  21. Kuhlewind, M., Neuner, S., & Trammell, B. (2013). On the state of ECN and TCP options on the internet. In Passive and active measurement (pp. 135–144), Springer.

  22. Kuriakose, J., Joshi, S., Vikram Raju, R., & Kilaru, A. (2014). In S. M. Thampi, A. Gelbukh & J. Mukhopadhyay (Eds.), A review on localization in wireless sensor networks. In S. M. Thampi, A. Gelbukh, J. Mukhopadhyay (Eds.), Advances in signal processing and intelligent recognition systems (pp. 599–610), Switzerland: Springer International Publishing.

  23. Kusano, K., Maeshiro, T., Yokoyama, T., & Sakurai, T. (2004). The trigger mechanism of solar flares in a coronal arcade with reversed magnetic shear. Astrophysical Journal, 610, 537–549.

    Article  Google Scholar 

  24. Latiff, L. A., Ali Ahmed, A., Fisal, N., & Arifin, S. A. (2010). Directional routing protocol in wireless mobile ad hoc network. Rijeka: INTECH Open Access Publisher.

    Book  Google Scholar 

  25. Lee, K. C., Lee, U., & Gerla, M. (2010). Survey of routing protocols in vehicular ad hoc networks. In M. Watfa (Ed.), Advances in vehicular ad-hoc networks: Developments and challenges. Calgary: Idea Group Inc (IGI).

  26. Li, J., Jannotti, J., De Couto, D. S. J., Karger, D. R., & Morris, R. (2000). A scalable location service for geographic ad hoc routing. In Proceedings of the 6th annual international conference on mobile computing and networking (pp. 120–130), ACM.

  27. Li, Z., Yao, N., & Gao, Q. (2014). Relative distance based forwarding protocol for underwater wireless networks. International Journal of Distributed Sensor Networks 437, 655–658.

  28. Low, B. C. (1997). The role of coronal mass ejections in solar activity. In N. Crooker, J. A. Joselyn, & J. Feynman (Eds.), Coronal mass ejection, Geophys. Monogr. Ser. (Vol. 99, pp. 39–48). Washington: AGU.

    Google Scholar 

  29. Lui, K.-S., Nahrstedt, K., & Chen, S. (2004). Routing with topology aggregation in delay-bandwidth sensitive networks. IEEE/ACM Transactions on Networking, 12(1), 17–29.

    Article  Google Scholar 

  30. Mandrini, C. H., Pohjolainen, S., Dasso, S., Green, L. M., Demoulin, P., van Driel-Gesztelyi, L., et al. (2005). Interplanetary flux rope ejected from an X-ray bright point—The smallest magnetic cloud source-region ever observed. Astronomy & Astrophysics, 434, 725–740. doi:10.1051/0004-6361:20041079.

    Article  Google Scholar 

  31. Marandin, D. (2012). Performance evaluation of failed link detection in mobile ad hoc networks. International Journal of Computer Applications, 42(2), 398–404.

    Google Scholar 

  32. Melrose, D. (2004). Conservation of both current and helicity in a quadrupolar model for solar flares. Solar Physics, 221, 121–133. doi:10.1023/B:SOLA.0000033358.64885.3a.

    Article  Google Scholar 

  33. Mistry, H. P., & Mistry, N. H. (2015). A survey: Use of ACO on AODV and DSR routing protocols in MANET. In 2015 international conference on Innovations in information, embedded and communication systems (ICIIECS) (Vol. 16), IEEE.

  34. Moffatt, H. K. (1999). The degree of knottedness of tangled vortex lines. Journal of Fluid Mechanics, 35, 117–129.

    Article  MATH  Google Scholar 

  35. Padmavathy, N., & Chaturvedi, S. K. (2013). Evaluation of mobile ad hoc network reliability using propagation-based link reliability model. Reliability Engineering and System Safety, 115, 19.

    Article  Google Scholar 

  36. Patil, R., & Kerji, V. K. (2011). SINR based routing for mobile ad-hoc networks. In 2011 3rd international conference on Electronics computer technology (ICECT) (Vol. 5, pp. 369–372).

  37. Pei, G., Gerla, M., & Chen, T.-W. (2000). Fisheye state routing: A routing scheme for ad hoc wireless networks. In IEEE international conference on Communications, 2000 (Vol. 1, pp. 70–74).

  38. Perkins, C., Belding-Royer, E., & Das, S. (2003). Ad hoc on-demand distance vector (AODV) routing, Technical report.

  39. Perkins, C. E., & Bhagwat, P. (1994). Highly dynamic destination-sequenced distance-vector routing (DSDV) for mobile computers. In ACM SIGCOMM computer communication review (Vol. 24, pp. 234–244).

  40. Royer, E. M., & Toh, C.-K. (1999). A review of current routing protocols for ad hoc mobile wireless networks. IEEE Personal Communications, 6(2), 46–55.

    Article  Google Scholar 

  41. Sarkar, S. K., Basavaraju, T. G., & Puttamadappa, C. (2007). Ad hoc mobile wireless networks: Principles, protocols and applications. Boca Raton: CRC Press.

    Book  Google Scholar 

  42. Seppanen, J, Varela, M, & Sgora, A. (2014). An autonomous QoE-driven network management framework. Journal of Visual Communication and Image Representation, 25(3), 565–577.

    Article  Google Scholar 

  43. Sharma, B., & Aseri, T. C. (2012). A comparative analysis of reliable and congestion aware transport layer protocols for wireless sensor networks. In ISRN sensor networks. Vol. 2012

  44. Sharma, V. K., & Bhadauria, S. S. (2011). Agent based congestion control routing for mobile ad-hoc network. In Trends in network and communications (pp. 324–333). Berlin, Heidelberg: Springer.

  45. Sheeja, S., & Pujeri, R. V. (2013). Effective congestion avoidance scheme for mobile ad hoc networks. International Journal of Computer Network and Information, Security, 5(1), 33.

    Article  Google Scholar 

  46. Soelistijanto, B., & Howarth, M. P. (2014). Transfer reliability and congestion control strategies in opportunistic networks: A survey. IEEE Communications Surveys and Tutorials, 16(1), 538–555.

    Article  Google Scholar 

  47. Srungaram, K., & Krishna Prasad, M. H. M. (2012). Enhanced cluster based routing protocol for MANETS. In Advances in computer science and information technology. Networks and communications (pp. 346–352), Springer.

  48. Tao, J, Bai, G, Shen, H, & Cao, L. (2011). Ecbrp: an efficient cluster-based routing protocol for real-time multimedia streaming in manets. Wireless Personal Communications, 61(2), 283–302.

    Article  Google Scholar 

  49. Xiang, X., Wang, X., & Zhou, Z. (2012). Self-adaptive on-demand geographic routing for mobile ad hoc networks. IEEE Transactions on Mobile Computing, 11(9), 1572–1586.

    Article  Google Scholar 

  50. Xu, J. (2015). An energy-awareness and congestion-avoidance routing protocol for mobile ad hoc networks. In Applied mechanics and materials (Vol. 719, pp. 727–731), Trans Tech Publ.

  51. Yang, Q., Lim, A., Li, S., Fang, J., & Agrawal, P. (2010). ACAR: Adaptive connectivity aware routing for vehicular ad hoc networks in city scenarios. Mobile Networks and Applications, 15(1), 36–60.

    Article  Google Scholar 

  52. Yassein, M. B., & Ould Khaoua, M. (2007). Application of probabilistic flooding in manets. Ubiquitous Computing and Communication Journal, 1, 15.

    Google Scholar 

  53. Zarei, M., Faez, K., & Nya, J. M. (2008). Modified reverse AODV routing algorithm using route stability in mobile ad hoc networks. In Multitopic conference, 2008 (pp. 255–259), IEEE International.

  54. Zhang, Z., Jia, Z., & Xia, H. (2012). Link stability evaluation and stability based multicast routing protocol in mobile ad hoc networks. In 2012 IEEE 11th international conference on Trust, security and privacy in computing and communications (TRUSTCOM) (pp. 1570–1577).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahlam Hashim Mohsin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohsin, A.H., Bakar, K.A. & Zainal, A. Optimal control overhead based multi-metric routing for MANET. Wireless Netw 24, 2319–2335 (2018). https://doi.org/10.1007/s11276-017-1468-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-017-1468-3

Keywords

Navigation