Skip to main content

Advertisement

Log in

Misalignment controller in wireless battery charger for electric vehicle based on MPPT method and metaheuristic algorithm

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

This paper focuses on applying a wireless power transfer WPT technology in an electric vehicle battery charger. The wireless charger system is based on the principle of resonance inductive coupling power through a coreless transformer. The WPT system is considered as a multi parameter and multi constrained nonlinear system. The main contribution in this paper is the use of PSO and GA metaheuristic algorithms in the optimization of a transformer design regarding the impact of a lateral misalignment and the separation distance between the primary and secondary coils. To find the best global solution which is considered as the maximum efficiency in the complex system, both algorithms are compared. A perturbation-and-observation-based tracking system is developed through an efficiency sensing system to act on the misalignment issue and the car position. An additional PSO controller is performed to control the duty cycle of the boost converter in order to follows the maximum efficiency operating points of a WPT system. The discrepancy is the use of the resonant inductive coupling as a source of the MPPT so as to perturb the car position and observe the transferred. Furthermore, the modeling of a contactless transformer is optimized using metaheuristic algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34

Similar content being viewed by others

References

  1. Mi, C. C., Buja, G., Choi, S. Y., & Rim, C. T. (2016). Modern advances in wireless power transfer systems for roadway powered electric vehicles. IEEE Transactions on Industrial Electronics, 63(10), 6533–6545.

    Article  Google Scholar 

  2. Guo, J., Tan, L., Liu, H., Wang, W., & Huang, X. (2016). Stabilization control of output power in double-source wireless power transfer systems without direct output feedback. IEEE Microwave and Wireless Components Letters, 26(11), 960–962.

    Article  Google Scholar 

  3. Li, S., Liu, Z., Zhao, H., Zhu, L., Shuai, C., & Chen, Z. (2016). Wireless power transfer by electric field resonance and its application in dynamic charging. IEEE Transactions on Industrial Electronics, 63(10), 6602–6612.

    Article  Google Scholar 

  4. Liou, C. Y., Kuo, C. J., & Mao, S. G. (2016). Wireless power transfer system using near-field capacitively coupled resonators. IEEE Transactions on Circuits and Systems II: Express Briefs, 63(9), 898–902.

    Article  Google Scholar 

  5. Mayordomo, I., Drager, T., Spies, P., Bernhard, J., & Pflaum, A. (2013). An overview of technical challenges and advances of inductive wireless power transmission. Proceeding of IEEE, 101(6), 1302–1311.

    Article  Google Scholar 

  6. Feng, H., Cai, T., Duan, S., Zhao, J., Zhang, X., & Chen, C. (2016). An LCC compensated resonant converter optimized for robust reaction to large coupling variation in dynamic wireless power transfer. IEEE Transactions on Industrial Electronics, 63(10), 6591–6601.

    Article  Google Scholar 

  7. Sudevalayam, S., & Kulkarni, P. (2011). Energy harvesting sensor nodes: Survey and implications. IEEE Communications Surveys & Tutorials, 13(3), 443–461.

    Article  Google Scholar 

  8. Huang, S., Yao, Y., & Feng, Z. (2016). Simultaneous wireless information and power transfer for relay assisted energy harvesting network. Wireless Network. doi:10.1007/s11276-016-1346-4.

  9. Bouchouicha, D., Dupont, F., Latrach, M., & Ventura, L. (2010). Ambient RF energy harvesting. In International conference on renewable energy and power quality (ICREPQ), Granada, Spain, pp. 1–5.

  10. Zungeru, A. M., Ang, L. M., Prabaharan, S., & Seng, K. P. (2012). Radio frequency energy harvesting and management for wireless sensor networks. In Green mobile devices and networks: Energy optimization and scavenging techniques (pp. 341–368). CRC Press, Taylor and Francis Group.

  11. Summerer, L., & Purcell, O. (2009). Concepts for wireless energy transmission via laser, Europeans Space Agency (ESA)-Advanced Concepts Team.

  12. Hui, S., Zhong, W.,  & Lee, C. (2014). A critical review of recent progress in mid-range wireless power transfer. IEEE Transactions on Power Electronics, 29(9), 4500–4511.

    Article  Google Scholar 

  13. Lee, S. H., Lee, B. S.,   & Lee, J. H. (2015). A new design methodology for a 300 kW, low flux density, large air-gap, on-line wireless power transfer system, IEEE Transportation Electrification Conference and Expo (ITEC), pp 1–7.

  14. Lin, D., Yin, J.,   & Hui, S. Y. R. (2014). Parameter identification of wireless power transfer systems using input voltage and current. In Proceeding on IEEE  Energy Conversion Congress and Exposition (ECCE), pp. 832–836.

  15. Tan, L., Guo, J., Huang, X., & Wen, F. (2016). Output power stabilisation of wireless power transfer system with multiple transmitters. IET Power Electronics, 9(7), 1374–1380.

    Article  Google Scholar 

  16. Kallell, B., Kanoun, O., & Trabelsi, H. (2016). Large air gap misalignment tolerable multi-coil inductive power transfer for wireless sensors. IET Power Electron & The Institution of Engineering and Technology, 9(8), 1768–1774.

    Article  Google Scholar 

  17. Ghamisi, P.,  & Benediktsson, J. A. (2015). Feature selection based on hybridization of genetic algorithm and particle swarm optimization. IEEE Geoscience and Remote Sensing Letters, 12(2), 309–313.

    Article  Google Scholar 

  18. Rao, P. C. S., Jana, P. K., & Banka, H. (2016). A particle swarm optimization based energy efficient cluster head selection algorithm for wireless sensor networks. Wireless Networks. doi:10.1007/s11276-016-1270-7.

  19. Zhang, S., Hu, Q., Wang, X., & Wang, D. (2011). Research of transformer optimal design modeling and intelligent algorithm. In Proceeding on 2011 Chinese Control and Decision Conference (CCDC), Mianyang, pp. 213–218.

  20. Smolka, J., & Nowak, A. (2011). Shape optimization of coils and cooling ducts in dry-type transformers using CFD and GA. IEEE Transactions Magnetic, 47(11), 1726–1731.

    Article  Google Scholar 

  21. Hengsi Q, Kimball J. W., & Venayagamoorthy, G. K. (2010). Particle swarm optimization of high-frequency transformer. In 36th Annual conference on IEEE industrial electronics society (IECON), Glendale, AZ, pp. 2914–2919.

  22. Rashtchi, V., Bagheri, A., Shabani, A., & Fazli, S. (2011). A novel PSO-based technique for optimal design of protective current transformers. International Journal for Computation and Mathematics in Electrical Electronics Engineering (COMPEL), 30(2), 505–518.

    Article  MATH  Google Scholar 

  23. Du, J., Li, P., Wu, G., Bai, H.,  & Shen, J. (2010). Improved PSO algorithm and its application in optimal design for rectifier transformer. In International conference on intelligent computing and integrated systems (ICISS), Guilin, China, pp. 605–608.

  24. Chiandussi, G., Codegone, M., Ferrero, S., & Varesio, F. E. (2012). Comparison of multi-objective optimization methodologies for engineering applications. Computers Mathematics Applications, 63(5), 912–942.

    Article  MathSciNet  MATH  Google Scholar 

  25. Kiani, M., Kwon, K. Y., Zhang, F., Oweiss, K., & Ghovanloo, M. (2011). Evaluation of a closed loop inductive power transmission system on an awake behaving animal subject. In Proceeding on IEEE Engineering in Medicine and Biology Conference, pp. 7658–77691.

  26. Jung, K. H., Kim, Y. H., Kim, J., & Kim, Y. J. (2009). Wireless power transmission for implantable devices using inductive component of closed magnetic circuit. Electronics Letter, 45(1), 21–22.

    Article  Google Scholar 

  27. Jo, S. E., Joung, S., Suh, J. K. F., & Kim, Y. J. (2012). Improvement of wireless power transmission efficiency of implantable subcutaneous devices by closed magnetic circuit mechanism. International Federation for Medical and Biological Engineering, 50(9), 973–980.

    Google Scholar 

  28. El-Sayed, K. G., Al Ahdab, R., & El-Shenawy, A. (2015). Neural network frequency selector for maximum power transfer. International Journal of Information and Electronics Engineering, 5(5), 342–345.

    Article  Google Scholar 

  29. Ozaki, T., Hirose, T., Asano, H., Kuroki, N., & Numa, M. (2016). Fully-integrated high-conversion-ratio dual-output voltage boost converter with MPPT for low-voltage energy harvesting. IEEE Journal of Solid-State Circuits, 51(10), 2398–2407.

    Article  Google Scholar 

  30. Liu, X., & Sánchez-Sinencio, E. (2015). An 86% efficiency 12 μW self-sustaining PV energy harvesting system with hysteresis regulation and time-domain MPPT for IOT smart nodes. IEEE Journal of Solid-State Circuits, 50(6), 1424–1437.

    Article  Google Scholar 

  31. Elgendy, M. A., Zahawi, B.,  & Atkinson, D. J. (2010). Comparison of directly connected and constant voltage controlled photovoltaic pumping systems. IEEE Transactions Sustainable Energy, 1(3), 184–192.

    Article  Google Scholar 

  32. Sohn, Y. H., Choi, B. H., Lee, E. S., & Rim, C. T. (2015). General unified analyses of two-capacitor inductive power transfer systems: equivalence of current-source SS and SP compensations. IEEE Transactions on Power Electronics, 30(11), 6030–6045.

    Article  Google Scholar 

  33. Choi, S. Y., Gu, B. W., Jeong, S. Y., & Rim, C. T. (2015). Advances in wireless power transfer systems for roadway-powered electric vehicles. IEEE Journal of Emerging and Selected Topics in Power Electronics, 3(1), 18–36.

    Article  Google Scholar 

  34. Kim, S., Park, H. H., Kim, J., Kim, J., & Ahn, S. (2014). Design and analysis of a resonant reactive shield for a wireless power electric vehicle. IEEE Transactions on Microwave Theory and Techniques, 62(4), 1057–1066.

    Article  Google Scholar 

  35. Li, S.,  & Mi, C. C. (2015). Wireless power transfer for electric vehicle applications. IEEE Journal of Emerging and Selected Topics in Power Electronics, 3(1), 4–17.

    Article  Google Scholar 

  36. Jabri, I., Bouallegue, A., Ghodbane, F., & Khedher, A. (2014). Analysis of the coreless transformer in wireless battery vehicle charger. In 9th international conference on ecological vehicles and renewable energies EVER’14, Monte-Carlo, pp. 1–6.

  37. Hemche, N., & Jaafari, A. (2008). Wireless transmission of p ower using a PCB transformer with mobile secondary. In IEEE Mediterrance Electrotechnical Conference, pp. 629–634.

  38. Oodachi, N., Ogawa, K., Kudo, H., Shoki, H., Obayashi, S., & Morooka, T. (2011). Efficiency improvement of wireless power transfer via magnetic resonance using transmission coil array. In IEEE International Symposium on Antennas and Propagation (APSURSI), pp. 1707–1710.

  39. Nemoianu, I, V., & Stănciulescu, A. R. (2004). Mutual inductance of microfabricated planar inductors. Received on October 15th, 2004.

  40. Huang, X. L., Qiang, H., & Tan, L. L. (2012). The coil misalignment model of inductively coupled wireless power transfer system: Mutual inductance analysis and transfer efficiency optimization. Progress in electromagnetics research symposium proceedings, Moscow, Russia, pp. 19–23.

  41. Raju, S., Wu, R., Chan, M., & Yue, C. P. (2013). Modelling of mutual coupling between planar inductors in wireless power applications. IEEE Transactions on Power Electronics, 29(1), 481–490.

    Article  Google Scholar 

  42. Hwang, S. H., Kang, C. G., Son, Y. H., & Jang, B. J. (2015). Software-based wireless power transfer platform for various power control experiments. Energies, 8(8), 7677–7689.

    Article  Google Scholar 

  43. Gao, Y., Farley, K. B., & Tse, Z. T. H. (2015). A uniform voltage gain control for alignment robustness in wireless EV charging energies. Energies, 8(8), 8355–8370.

    Article  Google Scholar 

  44. Guo, W., Li, J., Chen, G., Niu, Y., & Chen, C. (2014). A PSO-optimized real-time fault-tolerant task allocation algorithm in wireless sensor networks. IEEE Transactions on Parallel and Distributed Systems.

  45. Scott-Hayward, S., & Garcia-Palacios, E. (2014). Channel time allocation PSO for gigabit multimedia wireless networks. IEEE Transactions on Multimedia, 16(3), 828–836.

    Article  Google Scholar 

  46. Latiff, N. A. A., & Ismail, I. S. (2016). Performance of mobile base station using genetic algorithms in wireless sensor networks. GeMiC, Bochum, Germany, pp. 251–254.

    Google Scholar 

  47. Ishaque, K., Salam, Z., Amjad, M., & Mekhilef, S. (2012). An improved particle swarm optimization (PSO)-based MPPT for PV with reduced steady-state oscillation. IEEE Transactions Power Electronics, 27(8), 3627–3638.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ihssen Jabri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jabri, I., Bouallegue, A. & Ghodbane, F. Misalignment controller in wireless battery charger for electric vehicle based on MPPT method and metaheuristic algorithm. Wireless Netw 24, 2375–2396 (2018). https://doi.org/10.1007/s11276-017-1474-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-017-1474-5

Keywords

Navigation