Skip to main content
Log in

A novel approach for designing delay efficient path for mobile sink in wireless sensor networks

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

In the recent years, the use of mobile sink has drawn enormous attention for data collection in wireless sensor networks (WSNs). Mobile sink is well known for solving hotspot or sinkhole problem. However, the design of an efficient path for mobile sink has tremendous impact on network lifetime and coverage in data collection process of WSNs. This is particularly an important issue for many critical applications of WSNs where data collection requires to be carried out in delay bound manner. In this paper, we propose a novel scheme for delay efficient trajectory design of a mobile sink in a cluster based WSN so that it can be used for critical applications without compromising the complete coverage of the target area. Given a set of gateways (cluster heads), our scheme determines a set of rendezvous points for designing path of the mobile sink for critical applications. The scheme is based on the Voronoi diagram. We also propose an efficient method for recovery of the orphan sensor nodes generated due to the failure of one or more cluster heads during data collection. We perform extensive simulations over the proposed algorithm and compare its results with existing algorithms to demonstrate the efficiency of the proposed algorithm in terms of network lifetime, path length, average waiting time, fault tolerance and adaptability etc. For the fault tolerance, we simulate the schemes using Weibull distribution and analyze their performances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Ren, F., Zhang, J., He, T., Lin, C., & Ren, S. K. (2011). EBRP: energy-balanced routing protocol for data gathering in wireless sensor networks. IEEE Transactions on Parallel and Distributed Systems, 22(12), 2108–2125.

    Article  Google Scholar 

  2. Azharuddin, M., & Jana, P. K. (2016). Particle swarm optimization for maximizing lifetime of wireless sensor networks. Computers & Electrical Engineering, 51, 26–42.

    Article  Google Scholar 

  3. Lai, Wei Kuang, Fan, Chung Shuo, & Lin, Lin Yan. (2012). Arranging cluster sizes and transmission ranges for wireless sensor networks. Information Sciences, 183, 117–131.

    Article  Google Scholar 

  4. Ghafoor, S., Rehmani, M. H., Cho, S., & Park, S. H. (2014). An efficient trajectory design for mobile sink in a wireless sensor network. Computers & Electrical Engineering, 40(7), 2089–2100.

    Article  Google Scholar 

  5. Gu, Y., Ji, Y., Li, J., Ren, F., & Zhao, B. (2013). EMS: Efficient mobile sink scheduling in wireless sensor networks. Ad Hoc Networks, 11(5), 1556–1570.

    Article  Google Scholar 

  6. Garcia-Sanchez, A. J., Garcia-Sanchez, F., Losilla, F., Kulakowski, P., Garcia-Haro, J., Rodríguez, A., et al. (2010). Wireless sensor network deployment for monitoring wildlife passages. Sensors, 10(8), 7236–7262.

    Article  Google Scholar 

  7. Salarian, H., Chin, K. W., & Naghdy, F. (2014). An energy-efficient mobile-sink path selection strategy for wireless sensor networks. IEEE Transactions on Vehicular Technology, 63(5), 2407–2419.

    Article  Google Scholar 

  8. Samarah, S., Al-Hajri, M., & Boukerche, A. (2011). A predictive energy-efficient technique to support object-tracking sensor networks. IEEE Transactions on Vehicular Technology, 60(2), 656–663.

    Article  Google Scholar 

  9. Ghaffari, A. (2015). Congestion control mechanisms in wireless sensor networks: A survey. Journal of Network and Computer Applications, 52, 101–115.

    Article  Google Scholar 

  10. Anastasi, G., Conti, M., Di Francesco, M., & Passarella, A. (2009). Energy conservation in wireless sensor networks: A survey. Ad Hoc Networks, 7(3), 537–568.

    Article  Google Scholar 

  11. Di Francesco, M., Das, S. K., & Anastasi, G. (2011). Data collection in wireless sensor networks with mobile elements: A survey. ACM Transactions on Sensor Networks (TOSN), 8(1), 7.

    Article  Google Scholar 

  12. Johnson, D. S., & McGeoch, L. A. (2007). Experimental analysis of heuristics for the STSP. In G. Gutin & A. P. Punnen (Eds.), The traveling salesman problem and its variations (pp. 369–443). Springer US.

  13. Yun, Y., & Xia, Y. (2010). Maximizing the lifetime of wireless sensor networks with mobile sink in delay-tolerant applications. IEEE Transactions on Mobile Computing, 9(9), 1308–1318.

    Article  Google Scholar 

  14. Yu, L., Wang, N., & Meng, X. (2005, September). Real-time forest fire detection with wireless sensor networks. In Proceedings 2005 international conference on wireless communications, networking and mobile computing, 2005 (Vol. 2, pp. 1214–1217). IEEE.

  15. Wang, Z. M., Melachrinoudis, E., & Basagni, S. (2005). Voronoi diagram-based linear programming modeling of wireless sensor networks with a mobile sink. In Proceedings of IIE annual conference. Institute of Industrial Engineers-Publisher.

  16. Almi’Ani, K., Viglas, A., & Libman, L. (2010, October). Energy-efficient data gathering with tour length-constrained mobile elements in wireless sensor networks. In 2010 IEEE 35th conference on local computer networks (LCN) (pp. 582–589). IEEE.

  17. Shah, R. C., Roy, S., Jain, S., & Brunette, W. (2003). Data mules: Modeling and analysis of a three-tier architecture for sparse sensor networks. Ad Hoc Networks, 1(2), 215–233.

    Article  Google Scholar 

  18. Shi, Y., & Hou, Y. T. (2008, April). Theoretical results on base station movement problem for sensor network. In The 27th conference on computer communications INFOCOM 2008. IEEE.

  19. Wang, W., Srinivasan, V., & Chua, K. C. (2005, August). Using mobile relays to prolong the lifetime of wireless sensor networks. In Proceedings of the 11th annual international conference on mobile computing and networking (pp. 270–283). ACM.

  20. Tong, L., Zhao, Q., & Adireddy, S. (2003, October). Sensor networks with mobile agents. In Military communications conference, 2003. MILCOM’03. 2003 IEEE (Vol. 1, pp. 688–693). IEEE.

  21. Zema, N. R., Mitton, N., & Ruggeri, G. (2014). Using location services to autonomously drive flying mobile sinks in wireless sensor networks. In N. Mitton, A. Gallais, M. Kantarci & S. Papavassiliou (Eds.), Ad hoc networks (pp. 180–191). Springer International Publishing.

  22. Luo, J., & Hubaux, J. P. (2010). Joint sink mobility and routing to maximize the lifetime of wireless sensor networks: the case of constrained mobility. IEEE/ACM Transactions on Networking (TON), 18(3), 871–884.

    Article  Google Scholar 

  23. Liang, W., Luo, J., & Xu, X. (2010). Prolonging network lifetime via a controlled mobile sink in wireless sensor networks. In Proceedings of Globecom’10. IEEE.

  24. Gao, S., Zhang, H., & Das, S. K. (2011). Efficient data collection in wireless sensor networks with path-constrained mobile sinks. IEEE Transactions on Mobile Computing, 10(5), 1–9.

    Article  Google Scholar 

  25. Xing, G., Wang, T., Xie, Z., & Jia, W. (2008). Rendezvous planning in wireless sensor networks with mobile elements. IEEE Transactions on Mobile Computing, 7(12), 1430–1443.

    Article  Google Scholar 

  26. Mishra, M., Nitesh, K., & Jana, P. K. (2016). A delay-bound efficient path design algorithm for mobile sink in wireless sensor networks. In 2016 3rd international conference on recent advances in information technology (RAIT) (pp. 72–77). IEEE.

  27. Komal, P., Nitesh, K., & Jana, P. K. (2016). Indegree-based path design for mobile sink in wireless sensor networks. In 2016 3rd international conference on recent advances in information technology (RAIT) (pp. 78–82). IEEE.

  28. Kaswan, A., Nitesh, K., & Jana, P. K. (2016). A routing load balanced trajectory design for mobile sink in wireless sensor networks. In International conference on advances in computing, communications and informatics (ICACCI).

  29. Gu, Y., Ji, Y., Li, J., & Zhao, B. (2013). ESWC: Efficient scheduling for the mobile sink in wireless sensor networks with delay constraint. IEEE Transactions on Parallel and Distributed Systems, 24(7), 1310–1320.

    Article  Google Scholar 

  30. Marta, M., & Cardei, M. (2009). Improved sensor network lifetime with multiple mobile sinks. Pervasive and Mobile computing, 5(5), 542–555.

    Article  Google Scholar 

  31. Yang, Y., Fonoage, M. I., & Cardei, M. (2010). Improving network lifetime with mobile wireless sensor networks. Computer Communications, 33(4), 409–419.

    Article  Google Scholar 

  32. Xing, G., Li, M., Wang, T., Jia, W., & Huang, J. (2012). Efficient rendezvous algorithms for mobility-enabled wireless sensor networks. IEEE Transactions on Mobile Computing, 11(1), 47–60.

    Article  Google Scholar 

  33. Preparata, F. P., Shamos, M. I., & Preparata, F. P. (1985). Computational geometry: An introduction (Vol. 5). New York: Springer.

    Book  MATH  Google Scholar 

  34. Kuila, P., & Jana, P. K. (2014). Approximation schemes for load balanced clustering in wireless sensor networks. The Journal of Supercomputing, 68(1), 87–105.

    Article  Google Scholar 

  35. Xu, J., Liu, W., Lang, F., Zhang, Y., & Wang, C. (2010). Distance measurement model based on RSSI in WSN. Wireless Sensor Network, 2(08), 606.

    Article  Google Scholar 

  36. LAN/MAN Standards Committee. (2003). Part 15.4: Wireless medium access control (MAC) and physical layer (PHY) specifications for low-rate wireless personal area networks (LR-WPANs). IEEE Computer Society.

  37. Heinzelman, W., Chandrakasan, A., & Balakrishnan, H. (2002). Application specific protocol architecture for wireless micro-sensor networks. IEEE Transactions on Wireless Communications, 1(4), 660–670.

    Article  Google Scholar 

  38. Lee, J.-J., et al. (2008). Aging analysis in large-scale wireless sensor networks. Ad Hoc Networks, 6(7), 1117–1133.

    Article  Google Scholar 

  39. Rausand, M., & Hoyland, A. (2004). System reliability theory: Models, statistical methods, and applications (2nd ed.). New Jersey: Wiley.

    MATH  Google Scholar 

  40. Khamsi, M. A., & Kirk, W. A. (2011). An introduction to metric spaces and fixed point theory (Vol. 53). Hoboken: Wiley.

    MATH  Google Scholar 

  41. Erlebach, T., & van Leeuwen, E. J. (2008, January). Approximating geometric coverage problems. In Proceedings of the nineteenth annual ACM-SIAM symposium on discrete algorithms (pp. 1267–1276). Society for Industrial and Applied Mathematics.

  42. Bilò, V., Caragiannis, I., Kaklamanis, C., & Kanellopoulos, P. (2005). Geometric clustering to minimize the sum of cluster sizes. In G. S. Brodal & S. Leonardi (Eds.), AlgorithmsESA 2005 (pp. 460–471). Berlin: Springer.

  43. Azharuddin, M., & Jana, P. K. (2016). PSO-based approach for energy-efficient and energy-balanced routing and clustering in wireless sensor networks. Soft Computing. doi:10.1007/s00500-016-2234-7.

  44. Somasundara, A. A., Ramamoorthy, A., & Srivastava, M. B. (2007). Mobile element scheduling with dynamic deadlines. IEEE Transactions on Mobile Computing, 6(4), 395–410.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md Azharuddin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nitesh, K., Azharuddin, M. & Jana, P.K. A novel approach for designing delay efficient path for mobile sink in wireless sensor networks. Wireless Netw 24, 2337–2356 (2018). https://doi.org/10.1007/s11276-017-1477-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-017-1477-2

Keywords

Navigation