Skip to main content
Log in

Outage performance of downlink communications in cognitive-based two-tier networks: cooperative and non-cooperative femtocells

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Femtocell deployment, which is a promising approach to the coverage and capacity improvement of indoor communications, suffers from cross-tier interference. Therefore to make the femtocell technology practical this issue needs to be addressed appropriately. One serious type of cross-tier interference occurs in downlink communication, in which a macrocell user is located far from its macro base station. In this setup, the communication of the adjacent femto access points with their users makes the macrocell user experience a low SINR. This paper considers this scenario and shows how cognitive-enabled femto access points can cope with cross-tier interference. More precisely, we compute the outage probability of macro users in a two-tier network when femto access points use the energy detection-based spectrum sensing technique to find the unoccupied frequency subband. To improve the outage probability of macro users, we also study the effectiveness of cooperation among neighbor femto access points. In all cases, the analytical expressions are validated by computer simulations which confirm the accuracy of the used approximations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Mahmoodi, T., & Seetharaman, S. (2014). Traffic jam: Handling the increasing volume of mobile data traffic. IEEE Vehicular Technology Magazine. doi:10.1109/MVT.2014.2333765.

    Google Scholar 

  2. Liu, J., Wu, J., Chen, J., Wang, P., & Zhang, J. (2012). Radio resource allocation in buildings with dense femtocell deployment. International Conference on Computer Communications and Networks (ICCCN). doi:10.1109/ICCCN.2012.6289286.

    Google Scholar 

  3. Damnjanovic, A., Montojo, J., Yongbin, W., et al. (2012). A survey on 3GPP heterogeneous networks. IEEE Transactions on Wireless Communications. doi:10.1109/MWC.2011.5876496.

    Google Scholar 

  4. Zhang, H., Jiang, C., Beaulieu, N. C., Chu, X., Wen, X., & Tao, M. (2014). Resource allocation in spectrum-sharing OFDMA femtocells with heterogeneous services. IEEE Transactions on Communications. doi:10.1109/TCOMM.2014.2328574.

    Google Scholar 

  5. Zahir, T., Arshad, K., Nakata, A., & Moessner, K. (2013). Interference management in femtocells. IEEE Communication Surveys and Tutorials. doi:10.1109/SURV.2012.020212.00101.

    Google Scholar 

  6. Wei, W., & Guanding, Y., et al. (2013). Cognitive radio enhanced interference coordination for femtocell networks. IEEE Magazine on Communication. doi:10.1109/MCOM.2013.6525593.

    Google Scholar 

  7. Banitalebi, B., & Zeinalpour-Yazdi, Z. (2015). On downlink performance of two-tier networks with time hopping modulation. IET Communications. doi:10.1049/iet-com.2014.0383.

    Google Scholar 

  8. Zeinalpour-Yazdi, Z., & Jalali, S. (2014). Outage analysis of uplink two-tier networks. IEEE Transactions on Communications. doi:10.1109/TCOMM.2014.2337871.

    Google Scholar 

  9. Chandrasekhar, V., Andrews, J., Muharemovict, T., Shen, Z., & Gatherer, A. (2009). power control in two-tier femtocell networks. IEEE Transactions on Wireless Communications. doi:10.1109/TWC.2009.081386.

    Google Scholar 

  10. Novlan, T. D., & Andrews, J. (2013). Analytical evaluation of uplink fractional frequency reuse. IEEE Transactions on Communications. doi:10.1109/TCOMM.2013.031213.120260.

    Google Scholar 

  11. Hasani-Baferani, M., Abouei, J., & Zeinalpour-Yazdi, Z. (2016). Interference alignment in overlay cognitive radio femtocell networks. IET Communications. doi:10.1049/iet-com.2015.0690.

    Google Scholar 

  12. Gharehshiran, O. N., Attar, A., & Krishnamurthy, V. (2012). Collaborative sub-channel allocation in cognitive LTE femto-cells: A cooperative game-theoretic approach. IEEE Transactions on Communications. doi:10.1109/TCOMM.2012.100312.110480.

    Google Scholar 

  13. Shafie-Kordshouli, M., Zeinalpour-Yazdi, Z., & Ramezanian, R. (2016). Coverage improvement in femtocell networks via efficient utility pricing. IET Communications. doi:10.1049/iet-com.2015.1047.

    Google Scholar 

  14. Zhang, H., Jiang, C., Beaulieu, N. C., Chu, X., Wang, X., & Quek, T. Q. S. (2015). Resource allocation for cognitive small cell networks: A cooperative bargaining game theoretic approach. IEEE Transactions on Wireless Communications. doi:10.1109/TWC.2015.2407355.

    Article  Google Scholar 

  15. Adhikary, A., Ntranos, V., & Caire, G. (2011). Cognitive femtocells: Breaking the spatial reuse barrier of cellular systems. Information Theory and Applications (ITA). doi:10.1109/ITA.2011.5743563.

    Google Scholar 

  16. Chandrasekhar, V., & Andrews, J. (2009). Spectrum allocation in tiered cellular networks. IEEE Transactions on Communications. doi:10.1109/TCOMM.2009.10.080529.

    Google Scholar 

  17. Lien, S. Y., Lin, Y., & Chen, K. (2011). Cognitive and game-theoretical radio resource management for autonomous femtocells with QoS guarantees. IEEE Transactions on Wireless Communications. doi:10.1109/TWC.2011.060711.100737.

    Google Scholar 

  18. Attar, A., Krishnamurthy, V., & Gharehshiran, O. N. (2011). Interference management using cognitive base-stations for UMTS LTE. IEEE Communication Magazine. doi:10.1109/MCOM.2011.5978429.

    Google Scholar 

  19. Xie, R., Yu, F. R., Ji, H., & Li, Y. (2012). Energy-efficient resource allocation for heterogeneous cognitive radio networks with femtocells. IEEE Transactions on Wireless Communications. doi:10.1109/TWC.2012.092112.111510.

    Google Scholar 

  20. Cheng, S., Chon, A. W., Tseng, F., & Chen, K. (2012). Design and analysis of downlink spectrum sharing in two-tier cognitive femto networks. IEEE Transactions on Vehicular Technology. doi:10.1109/TVT.2012.2187692.

    Google Scholar 

  21. Lima, C. H. M., Bennis, M., & Latva-aho, M. (2012). Coordination mechanisms for self-organizing femtocells in two-tier coexistence scenarios. IEEE Transactions on Wireless Communications. doi:10.1109/TWC.2012.041912.110965.

    Google Scholar 

  22. ElSawy, H., & Hossain, E. (2012). On cognitive small cells in two-tier heterogeneous networks. In International Symposion on Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks (WiOpt) (pp. 75–82).

  23. Lima, C., Bennis, M., & Latva-aho, M. (2014). Two-tier hetnets with cognitive femtocells: Downlink performance modeling and analysis in a multi-channel environment. IEEE Transactions on Mobile Computing. doi:10.1109/TMC.2013.36.

    Google Scholar 

  24. Wang, W., & Zhang, Q. (2014). Local cooperation architecture for self-healing femtocell networks. IEEE Wireless Communications. doi:10.1109/MWC.2014.6812290.

    Google Scholar 

  25. Urgaonkar, R., & Neely, M. J. (2012). Opportunistic cooperation in cognitive femtocell networks. IEEE Journals on Selected Areas Communications. doi:10.1109/JSAC.2012.120410.

    Google Scholar 

  26. Heo, E., Park, H., & Jimaa, S. (2014). An efficient cooperation strategy and cooperation region analysis in cognitive femtocell networks. IEEE Vehicular Technology Conference (VTC). doi:10.1109/VTCFall.2014.6965867.

    Google Scholar 

  27. Li, Y., Zhang, H., & Asami, T. (2013). On the cooperation between cognitive radio users and femtocell networks for cooperative spectrum sensing and self-organization. IEEE Wireless Communications and Networking Conference (WCNC). doi:10.1109/WCNC.2013.6554605.

    Google Scholar 

  28. Jo, H. S., Sang, Y. J., Xia, P., & Andrews, J. (2012). Heterogeneous cellular networks with flexible cell association: A comprehensive downlink SINR analysis. IEEE Transactions on Wireless Communications. doi:10.1109/TWC.2012.081612.111361.

    Google Scholar 

  29. Zhang, H., Jiang, C., Mao, X., & Chen, H.-H. (2016). Interference-limit resource optimization in cognitive femtocells with fairness and imperfect spectrum sensing. IEEE Transactions on Vehicular Technology. doi:10.1109/TVT.2015.2405538.

    Google Scholar 

  30. Jiang, C., Zhang, H., Han, Z., Cheng, J., Ren, Y., & Hanzo, L. (2016). On the outage probability of information sharing in cognitive vehicular networks. IEEE International Conference on Communications (ICC). doi:10.1109/ICC.2016.7511436.

    Google Scholar 

  31. Zou, Y., Yao, Y.-D., & Zheng, B. (2011). Cognitive transmissions with multiple relays in cognitive radio networks. IEEE Transactions on Wireless Communications. doi:10.1109/TWC.2010.120610.100830.

    Google Scholar 

  32. Beaulieu, N. C. (2008). Fast convenient numerical computation of lognormal characteristic functions. IEEE Transactions on Communications. doi:10.1109/TCOMM.2008.060123.

    Google Scholar 

  33. Zeinalpour-Yazdi, Z., Nasiri-Kenari, M., & Aazhang, B. (2010). Bit error probability analysis of UWB communications with a relay node. IEEE Transactions on Wireless Communications. doi:10.1109/TWC.2010.02.090383.

    Google Scholar 

  34. Andrews, J., Baccelli, F., & Ganti, R. K. (2011). A tractable approach to coverage and rate in cellular networks. IEEE Transactions on Communications. doi:10.1109/TCOMM.2011.100411.100541.

    Google Scholar 

  35. Yucek, T., & Arslan, H. (2009). A survey of spectrum sensing algorithms for cognitive radio applications. IEEE Communication Surveys and Tutorials. doi:10.1109/SURV.2009.090109.

    Google Scholar 

  36. Zeinalpour-Yazdi, Z., & Jalali, S. (2013). On expected capacity of multicarrier frequency hopping systems. In Iran Workshop on Communication and Information Theory (IWCIT). doi:10.1109/IWCIT.2013.6555768.

  37. Liang, Y.-C., Zeng, Y., Peh, E. C., & Hoang, A. T. (2008). Sensing-throughput tradeoff for cognitive radio networks. IEEE Transactions on Wireless Communications. doi:10.1109/TWC.2008.060869.

    Google Scholar 

  38. Lin, Y.-E., Liu, K.-H., & Hsieh, H.-Y. (2013). On using interference-aware spectrum sensing for dynamic spectrum access in cognitive radio networks. IEEE Transactions on Mobile Computing. doi:10.1109/TMC.2012.16.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zolfa Zeinalpour-Yazdi.

Appendices

Appendix 1: Derivation of missed detection probability at the FAP

A dual hypothesis testing that include \(H_0\) and \(H_1\) to represent absence and presence of the MU in a specific subband, respectively, is applied to our system model and defined as

$$\begin{aligned} \left\{ {\begin{array}{ll} {{H_0}:y_r^f = {n_f}}\\ {{H_1}:y_r^f = \frac{{\sqrt{{P_M}} {h_{Mf}}}}{{\sqrt{P{L_{Mf}}} }}{b_M} + {n_f}} \end{array}} \right. , \end{aligned}$$
(27)

where, \(y_r^f\) is the received signal at the FAP during the spectrum sensing process and existence of the MU is detected based on this parameter. The parameter \(b_M\) denotes the transmitted signal from MBS to the MU, \(h_{M,f}\) is the channel fading of the link between MBS and FAP and finally \(n_f\) refers to an AWGN with zero mean and variance \(\sigma _n^2\).

The energy detector which has been used by each FAP, firstly creates an output statistic, \(T\left[ {y_r^f} \right] \), using N samples of the received signal. Then the detector compares it with a certain threshold, \(\lambda \). Hence, the result of spectrum sensing at the FAP can be expressed as

$$\begin{aligned} {{\hat{H}}_f} = \left\{ {\begin{array}{c} {{H_0},\quad T\left[ {y_r^f} \right] < \lambda }\\ {{H_1},\quad T\left[ {y_r^f} \right] > \lambda } \end{array}} \right. ,\quad T\left[ {y_r^f} \right] = \frac{1}{N}\sum \limits _{n = 1}^N {|y_r^f(n){|^2}} . \end{aligned}$$
(28)

For deterministic value of fading coefficients and path loss, according to the central limit theorem and also the results presented in [37, 38] \(H_0\) and \(H_1\) will be converged to the normal distribution for large N as

$$\begin{aligned} T\left[ {y_r^f\left| {{H_0}} \right. } \right] \sim {\mathcal {N}}\left( {\sigma _n^2,\frac{{{{\left( \sigma _n^2\right) }^2}}}{N}} \right) \end{aligned}$$
(29)

and

$$\begin{aligned} T\left[ {y_r^f\left| {{H_1}} \right. } \right] \sim {\mathcal {N}}\left[ {\left( {\frac{{|{h_{Mf}}{|^2}}}{{P{L_{Mf}}}}\cdot \frac{{{P_M}}}{{\sigma _n^2}} + 1} \right) \sigma _n^2,\left( {\frac{{|{h_{Mf}}{|^2}}}{{P{L_{Mf}}}}\cdot \frac{{{P_M}}}{{\sigma _n^2}} + 1} \right) \frac{{{{\left( \sigma _n^2\right) }^2}}}{N}} \right] . \end{aligned}$$
(30)

Now, \(P_{md}\) is easily obtained as

$$\begin{aligned} {P_{md}} = 1-\Pr \left\{ {{{{\hat{H}}}_f} = {H_1}\left| {{H_M} = {H_1}} \right. } \right\} = 1 - Q\left( {\frac{{\lambda - \left( {\frac{{|{h_{Mf}}{|^2}}}{{P{L_{Mf}}}}\cdot \frac{{{P_M}}}{{\sigma _n^2}} + 1} \right) \sigma _n^2}}{{\frac{{\sigma _n^2}}{{\sqrt{N} }}\sqrt{\left( {\frac{{|{h_{Mf}}{|^2}}}{{P{L_{Mf}}}}\cdot \frac{{{P_M}}}{{\sigma _n^2}} + 1} \right) } }}} \right) . \end{aligned}$$
(31)

It is worthwhile to mention that the probability of false alarm (declaring that a subband is occupied while it is free) is equal to

$$\begin{aligned} {P_{fa}} = \Pr \left\{ {{{{\hat{H}}}_f} = {H_1}\left| {{H_M} = {H_0}} \right. } \right\} = 1 - Q\left( \frac{\lambda -\sigma _n^2}{\frac{\sigma _n^2}{{\sqrt{N}}}} \right) . \end{aligned}$$
(32)

Therefore in a desired specific value for the false alarm probability, the threshold level \((\lambda )\) in the energy detector can be computed as

$$\begin{aligned} \lambda = \frac{\sigma _n^2}{{\sqrt{N}}}Q^{-1}\left( P_{fa}+\sigma _n^2\right) . \end{aligned}$$
(33)

Appendix 2: Average of missed detection probability at FC in the cooperative scheme

As mentioned previously, in the case of cooperation among neighboring FAPs the missed detection probability is equal to

$$\begin{aligned} P_{md {\big | {h_{M,f}^{(i)}}, N_{FAP}}}^c = \prod _{i=1}^{N_{FAP}} P_{md {\big | {h_{M,f}^{(i)}}}}^{(i)}, \end{aligned}$$
(34)

where

$$\begin{aligned} P^{(i)}_{md {\big | {h_{M,f}^{(i)}}}} = 1- Q \left( \sqrt{N} \frac{\left( {\lambda \over \sigma _n^2}-1-\eta \left| h_{M,f}^{(i)}\right| ^2\right) }{\sqrt{\eta |h_{M,f}^{(i)}|^2+1}} \right) . \end{aligned}$$
(35)

Considering that channel coefficients \({h_{M,f}^{(i)}}\)s for \(i=1,\ldots N_{FAP}\) are independent from each other and follow Rayleigh distribution with parameter \(\sigma _{M,f}\) we can remove the effect of channel coefficient as

$$\begin{aligned} P_{md}^{(i)} = \int _0^\infty \left( 1- Q \left( \sqrt{N} \frac{\left( {\lambda \over \sigma _n^2}-1-\eta x\right) }{\sqrt{\eta x+1}} \right) \frac{1}{{\sigma _{M,f}^2}}{e^{ - {{{{x}} \over {\sigma _{M,f}^2}}}}}\right) d{x}. \end{aligned}$$
(36)

Applying GQR technique to the above integral resulting in

$$\begin{aligned} P_{m{d}}^{(i)} = \sum \limits _{j = 1}^{n} {w'_j} \left( 1- Q \left( \sqrt{N} \frac{\left( {\lambda \over \sigma _n^2}-1-\eta \sigma _{M,f}^2 x'_j\right) }{\sqrt{\eta \sigma _{M,f}^2 x'_j+1}} \right) \right) \triangleq \kappa , \end{aligned}$$
(37)

where \(\lambda \) is the threshold level of energy detector. Now from (34),

$$\begin{aligned} P_{md\big | N_{FAP}}^c = \left( P_{md}^{(i)} \right) ^{N_{FAP}}. \end{aligned}$$
(38)

Finally as FAPs are distributed according to a PPP with density \(\lambda _f\) in a cooperation circle with radius \(R_c\), the average missed detection probability at FC is obtained as

$$\begin{aligned} {\overline{P_{md}^c}} = e^{\lambda _f\pi R_c^2\left( \kappa -1\right) }, \end{aligned}$$
(39)

where \(\kappa \) was defined in (37).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeinalpour-Yazdi, Z., Koleini, E. & Banitalebi, B. Outage performance of downlink communications in cognitive-based two-tier networks: cooperative and non-cooperative femtocells. Wireless Netw 24, 2645–2655 (2018). https://doi.org/10.1007/s11276-017-1492-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-017-1492-3

Keywords

Navigation