Skip to main content

Advertisement

Log in

Rate allocation and relaying strategy adaption in wireless relay networks

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

In this paper, we propose a dynamic rate allocation and relaying strategy adaption scheme for data transmission over wireless relay networks, where autonomous nodes expose node-selfishness, i.e. being unwilling to forward other nodes’ data packets, for saving their energy resources. Aided by an incentive mechanism, we develop a virtual node-selfishness queue (VSQ) to portray the node’s dynamic selfish characteristic in terms of its energy resource and incentives. Then, a stochastic optimization model is employed to maximize the average network throughput whilst keeping the network stable and bounding the node-selfishness. The problem of stochastic optimization is further decomposed into two subproblems via the Lyapunov optimization theory, which corresponds to the rate allocation for source and the relaying strategy adaption for autonomous relay, respectively. After that, a joint rate allocation and relaying strategy adaption algorithm is developed to accommodate the wireless network only according to the current network state information, i.e. the data queue sate information, VSQ information at relays and the channel state information of the links. The explicit tradeoff between network throughput and average data transmission delay is theoretically proven. Simulation results validate the theoretical analysis of our proposed scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. A network is called stable if all individual queues of the network are stable.

  2. The value of node-selfishness keeps less than the infinity, which means that the node being completely selfish is avoided.

  3. The probability that the relay forwards the received data.

  4. The incentive mechanisms have two categories, the price-based and reputation-based schemes. The price-based scheme provides incentives by the way of virtual currency paid to nodes for offering services. The reputation-based mechanism uses the nodes’ historical behaviors to assess their reputations, and then distinguishes the selfish nodes by setting a reputation threshold.

  5. A session-based service comes from the transport or/and upper layers.

  6. The capacity region \(\varLambda\) is defined as all of the data arrival rate \(\varvec{\lambda }\) that can be stably supported by the wireless network, considering all possible rate and forwarding strategy control decisions.

References

  1. Li, P., & Guo, S. (2013). On the multicast capacity in energy-constrained lossy wireless networks by exploiting intrabatch and interbatch network coding. IEEE Transactions on Parallel and Distributed Systems, 24(11), 2251–2260.

    Article  Google Scholar 

  2. Cao, B., Li, Y., Wang, C., & Feng, G. (2015). Dynamic cooperative media access control for wireless networks. Wireless Communications and Mobile Computing Conference, 15(13), 1759–1772.

    Article  Google Scholar 

  3. Cao, B., Chen, Q., Feng, G., Li, Y., & Wang, C. (2017). Revisiting relay assignment in cooperative communications. Wireless Networks, 32(2), 609–623.

  4. Orallo, E., Olmos, M., Cano, J., & Calafate, C. (2015). CoCoWa: A collaborative contact-based watchdog for detecting selfish nodes. IEEE Transactions on Mobile Computing, 14(6), 1162–1175.

    Article  Google Scholar 

  5. Kong, Z., Kwok, Y., & Wang, J. (2008). On the impact of selfish behaviors in wireless packet scheduling. In Proceedings of IEEE ICC (pp. 3253–3257).

  6. Li, Z., & Shen, H. (2012). Game-theoretic analysis of cooperation incentive strategies in mobile ad hoc networks. IEEE Transactions on Mobile Computing, 11(8), 1287–1303.

    Article  Google Scholar 

  7. Bertsekas, D., & Gallager, R. (1987). Data networks. Prentice-Hall.

    MATH  Google Scholar 

  8. Neely, M. (2010). Stochastic network optimization with application to communication and queueing systems. Morgan & Claypool.

  9. Luo, C., Guo, S., & Yang, T. (2014). Green communication in energy renewable wireless mesh networks: routing, rate control, and power allocation. IEEE Transactions on Parallel and Distributed Systems, 25(12), 3211–3220.

    Article  Google Scholar 

  10. Cao, B., Feng, G., Li, Y., & Wang, C. (2014). Cooperative media access control with optimal relay selection in error-prone wireless networks. IEEE Transactions on Vehicular Technology, 63(1), 252–265.

    Article  Google Scholar 

  11. Jiang, C., Chen, Y., & Liu, K. (2013). Distributed adaptive networks: a graphical evolutionary game-theoretic view. IEEE Transactions on Signal Processing, 61(22), 5675–5688.

    Article  MathSciNet  MATH  Google Scholar 

  12. Zhu, H., Pandana, C., & Liu, K. (2005). A self-learning repeated game framework for optimizing packet forwarding networks. InProceedings of IEEE WCNC (pp. 2131–2136).

  13. Clark, A., Pande, A., Govindan, K., & Poovendran, R. (2013). Using social information for flow allocation in MANETs. Computer Science

  14. Bao, F., Chen, I., Chang, M., & Cho, J. (2012). Hierarchical trust management for wireless sensor networks and its applications to trust-based routing and intrusion detection. IEEE Transactions on Network and Service Management, 9(2), 169–183.

    Article  Google Scholar 

  15. Mastronarde, N., Patel, V., Xu, J., & Liu, L. (2015). To relay or not to relay: Learning device-to-device relaying strategies in cellular networks. IEEE Transactions on Mobile Computing, 15(6), 1569–1585.

    Article  Google Scholar 

  16. Neely, M. (2012). Dynamic optimizaton and learning for renewal systems view document. IEEE Transactions on Automatic Control, 58(1), 32–46.

    Article  MathSciNet  Google Scholar 

  17. Ma, X., Sheng, M., & Zhang, Y. (2012). Green communications with network cooperation: A concurrent transmission approach. IEEE Communications Letters, 16(12), 1952–1955.

    Article  Google Scholar 

  18. Fang, W., Li, Y., Zhang, H., & Xiong, N. (2014). On the throughput-energy tradeoff for data transmission between cloud and mobile devices. Information Sciences, 283, 79–93.

    Article  Google Scholar 

  19. Li, Y., Shi, Y., Sheng, M., & Wang, C. (2015). Energy-efficient transmission in heterogeneous wireless networks: A delay-aware approach. IEEE Transactions on Vehicular Technology, 65(9), 7488–7500.

    Article  Google Scholar 

  20. Zhu, H., Lu, X., & Fan, Y. (2009). SMART: A secure multilayer credit-based incentive scheme for delay-tolerant networks. IEEE Transactions on Vehicular Technology, 58(8), 4628–4639.

    Article  Google Scholar 

  21. Xu, Q., Su, Z., & Guo, S. (2016). A game theoretical incentive scheme for relay selection services in mobile social networks. IEEE Transactions on Vehicle Technology, 65(8), 6692–6702.

    Article  Google Scholar 

  22. Xu, W., Zhang, Y., Shi, Q., & Wang, X. (2015). Energy management and cross layer optimization for wireless sensor network powered by heterogeneous energy sources. IEEE Transactions on Wireless Communications, 14(5), 2814–2826.

    Article  Google Scholar 

  23. Meester, R., & Trapman, P. (2010). Bounding basic characteristics of spatial epidemics with a new percolation model. arxiv.org/abs/0812.4353.

  24. Georgiadis, L., Neely, M., & Tassiulas, L. (2006). Resource allocation and cross-layer control in wireless networks. Foundations and Trends in Networking, 1(1), 1–144.

    Article  MATH  Google Scholar 

  25. Vu, Q., Tran, L., & Farrell, R. (2015). An efficiency maximization design for SWIPT. IEEE Signal Processing Letters, 22(12), 2189–2193.

    Article  Google Scholar 

  26. Palomar, D., & Chiang, M. (2006). A tutorial on decomposition methods for network utility maximization. IEEE Journal on Selected Areas in Communications, 24(8), 1439–1451.

    Article  Google Scholar 

  27. Uchimura, Y., Nasu, T., & Takahashi, M. (2010). IEEE 802.11-based wireless sensor system for vibration measurement. Advances in Civil Engineering. doi:10.1155/2010/631939.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Feng.

Appendices

Appendices

1.1 Appendix 1: Proof of Lemma 1

Followed from Eq. (8), we have

$$\begin{aligned}&L({\varvec{\Theta }}^{t+1})-L({\varvec{\Theta }}^{t})=\frac{1}{2}(\max [\mathbf {Q}^{t}-\mathbf {R}^{t},0]+\mathbf {F}_m^{t})^{H}(\max [\mathbf {Q}^{t}-\mathbf {R}^{t},0]+\mathbf {F}_m^{t})\\&\quad +\,\frac{1}{2}(\max [\mathbf {T}^{t}-\mathcal {R}^p_m\mathbf {F}_n^{t},0]+\mathcal {R}^g\mathbf {R}^{t}+\mathbf {S}^{t}P^T+P^R\mathbf {F}_m^{t}))^{H}(\max [\mathbf {T}^{t}\\&\quad -\,\mathcal {R}^p_m\mathbf {F}_n^{t},0]+\mathbf {S}^{t}P^T+P^R\mathbf {F}_m^{t}+\mathcal {R}^g\mathbf {R}^{t})-\frac{1}{2}(\mathbf {Q}^{t})^{H}\mathbf {Q}^{t}-\frac{1}{2}(\mathbf {T}^{t})^{H}\mathbf {T}^{t}, \end{aligned}$$

where we have used the queue evolution in Eqs. (1) and (3).

Based on the inequality property that \((\max [Q-r,0]+f)^{2}\le Q^{2}+r^{2}+f^{2}+2Q(f-r)\), we obtain

$$\begin{aligned}&L({\varvec{\Theta }}^{t+1})-L({\varvec{\Theta }}^{t}) \le \frac{1}{2}(1+(\mathcal {R}^g)^2)(\mathbf {R}^{t})^{H}(\mathbf {R}^{t})+\frac{1}{2}(\mathbf {F}_m^{t})^{H}(\mathbf {F}_m^{t}) +(\mathbf {F}_m^{t}-\mathbf {R}^{t})^{H}\mathbf {Q}^{t}+\frac{1}{2}(\mathcal {R}^p_m\mathbf {F}_n^{t})^{2} \nonumber \\&\qquad +\,\frac{1}{2}\mathbf {S}^{2}(P^T)^2+\frac{1}{2}(P^R\mathbf {F}_m^{t})^2+2(\mathbf {S}^{t}P^T-\mathcal {R}^p_m\mathbf {F}_n^{t}+\mathbf {F}_m^{t}P^R+\mathcal {R}^g\mathbf {R}^{t})^{H}\mathbf {T}^t \nonumber \\&\quad \le B+(\mathbf {F}_m^{t}-\mathbf {R}^{t})^{H}\mathbf {Q}^{t}+(\mathbf {S}^{t}P^T-\mathcal {R}^p_m\mathbf {F}_n^{t}+\mathbf {F}_m^{t}P^R+\mathcal {R}^g\mathbf {R}^{t})^H \mathbf {T}^t, \end{aligned}$$
(15)

where B is an upper bound on the term \(\frac{1}{2}[(1+(\mathcal {R}^g)^2)(\mathbf {R}^{t})^{H}(\mathbf {R}^{t})+(\mathbf {F}_m^{t})^{H}(\mathbf {F}_m^{t})+(\mathcal {R}^p\mathbf {R}^{t})^{2}+\mathbf {S}^{2}(P^T)^2+(P^R\mathbf {F}_m^{t})^2]\), which holds under the fact that the data rates satisfy the properties of boundness. Adding \(-V{\bar{\mathbf{E}}}[U^{t}({\alpha }^{t}, \mathbf {h}^{t})|{\varvec{\Theta }}^{t}]\) to both sides of Eq. (15) and taking a expectation, yields

$$\begin{aligned} \varDelta ({\varvec{\Theta }})^{t}&-V \mathbb {{E}}\left[ U^{t}\left( \alpha ^{t}, \mathbf {h}^{t}\right) |{\varvec{\Theta }}^{t}\right] \le B-V \mathbb {{E}}[ U^{t}(\alpha ^{t}, \mathbf {h}^{t})|{\varvec{\Theta }}^{t}]+\mathbb {{E}}\left[ (\mathbf {F}_m^{t}-\mathbf {R}^t)^{H}\mathbf {Q}^{t}|{\varvec{\Theta }}^{t}\right] ,\nonumber \\&+\left[ \left( \mathbf {S}^{t}P^T-\mathcal {R}^p_m\mathbf {F}_n^{t}+\mathbf {F}_m^{t}P^R+\mathcal {R}^g\mathbf {R}^{t}\right) ^{H}\mathbf {T}^t|{\varvec{\Theta }}^{t}\right] . \end{aligned}$$
(16)

This completes the proof of Lemma 1.

1.2 Appendix 2: Proof of Lemma 2

Since there at least exists a rate allocation policy that stabilizes the wireless network under arriving data session rate \(\varvec{\lambda }+\varepsilon\). Then, we obtain that \(\varvec{\lambda }\) is strictly interior to the capacity region \(\varLambda\), and that \(\varvec{\lambda }+\varepsilon\) is still in \(\varLambda\) for a positive \(\varepsilon\), there exist a \(\mathbf {h}\)-only policy that

$$\begin{aligned} \mathbb {E}\left[ \tilde{r}_{n,m}^{f_{m},t}\right]- & {} \mathbb {E}\left[ \tilde{r}_{s,n}^{f_{m},t}\right] \ge \varepsilon ,\\ \mathbb {E}\left[ \mathcal {R}_m^p\tilde{r}_{s,n}^{f_{n},t}\right]- & {} \mathbb {E}\left[ \tilde{s}_{n,m}^{t}P^T+\mathcal {R}^g\tilde{r}_{n,m}^{f_{m},t}+\left( \tilde{r}_{s,n}^{f_{m},t}\right) P^R\right] \ge \sigma , \end{aligned}$$

where \(\tilde{r}_{s,n}^{f_{m},t}\), \(\tilde{r}_{n,m}^{f_{m},t}\), \(\tilde{s}_{n,m}^{t}\) and \(\tilde{r}_{s,n}^{f_{n},t}\) are the resulting values at time-slot t under \(\mathbf {h}\)-only policy.

Due to the rate allocation in Eq. (12), then

$$\begin{aligned}&\mathbb {{E}}\left[ \sum _{n}\left( V \sum _{m}w_{n,m}\log \left( {r}_{s,n}^{f_{m},t}+e\right) +V w_{n}\log \left( {r}_{s,n}^{f_{n},t}+e\right) -\sum _{m}\left( Q_{n,m}^t{r}_{s,n}^{f_{m},t}-P^RT^t_{n,m}{r}_{s,n}^{f_{m},t}\right) +\mathcal {R}^p{r}_{s,n}^{f_{n},t}\sum _{m}T_{n,m}^t\right) \right] \\&\quad \ge \mathbb {{E}}\left[ \sum _{n}\left( V \sum _{m}w_{n,m}\log \left( \tilde{r}_{s,n}^{f_{m},t}+e\right) +V w_{n}\log \left( \tilde{r}_{s,n}^{f_{n},t}+e\right) -\sum _{m}(Q_{n,m}^t\tilde{r}_{s,n}^{f_{m},t}-T^t_{n,m}P^R\tilde{r}_{s,n}^{f_{m},t}) +\mathcal {R}^p\tilde{r}_{s,n}^{f_{n},t}\sum _{m}T_{n,m}^t\right) \right] . \end{aligned}$$

Similarly,

$$\begin{aligned}&\mathbb {{E}}\left[ \sum _{n,m}\left( Q_{n,m}^t-\mathcal {R}^gT_{n,m}^t\right) \log \left( 1+{s}_{n,m}^tP^T|h_{n,m}^t|^{2}\right) -\sum _{n,m}T_{n,m}^t{s}_{n,m}^tP^T\right] \\&\quad \ge \mathbb {{E}}\left[ \sum _{n,m}\left( Q_{n,m}^t-\mathcal {R}^gT_{n,m}^t\right) \log \left( 1+\tilde{s}_{n,m}^tP^T|h_{n,m}^t|^{2}\right) -\sum _{n,m}T_{n,m}^t\tilde{s}_{n,m}^tP^T\right] . \end{aligned}$$

The rate set \({\mathbf {F}}^{t}\) and relaying strategy \({\mathbf {S}}^{t}\) obtained by Algorithm 1 have better performance than the \(\mathbf {h}\)-only policy. There comes the equation at the top of the former page.

1.3 Appendix 3: Proof of Theorem 1

(a) Note that \(Q_{n,m}^t\ge 0\) and \(T_{n,m}^t\ge 0\) in this paper. Then, combining Eq. (10) in Lemma 1 and the conclusions in Lemma 2, we have

$$\begin{aligned} \varDelta ({\varvec{\Theta }})^{t}-V \mathbb {{E}}[U^{t}({\alpha }^{t}, \mathbf {h}^{t})|{\varvec{\Theta }}^{t}] \le B-V\tilde{U}^t(\tilde{\alpha }^{t}, \mathbf {h}^{t})-\sum _{n,m}\left( \varepsilon Q_{n,m}^t+\delta T_{n,m}^t\right) \le B-V \overline{U}^{opt}, \end{aligned}$$
(17)

where \(\overline{U}^{opt}\) is the average optimal utility of \(\mathbf {h}\)-only policy. From Proposition 1, we have \(\varDelta ({\varvec{\Theta }})^{t}\le \psi\) where \(\psi\) is a constant. Taking telescoping sum over \(t\in \{0,1,\ldots ,\varsigma -1\}\) in the above inequality and using Eq. (10), we get

$$\begin{aligned} \mathbb {E}\{T_n(\varsigma )^2\}\le 2\varsigma \psi +2\mathbb {E}\{L({\varvec{\Theta }})^{0})\}. \end{aligned}$$
(18)

From the variance formula: \(D(\mid T_n(\varsigma )\mid )=\mathbb {E}(\mid T_n(\varsigma )\mid ^2)-[\mathbb {E}(\mid T_n(\varsigma )\mid )]^2\), we have \(\mathbb {E}(\mid T_n(\varsigma )\mid ^2)\ge [\mathbb {E}(\mid T_n(\varsigma )\mid )]^2\). Thus

$$\begin{aligned} \mathbb {E}\{\mid T_n(\varsigma )\mid \}\le \sqrt{2\varsigma \psi +2\mathbb {E}\{L({\varvec{\Theta }})^{0})}. \end{aligned}$$

Dividing by \(\varsigma\) and taking a limit as \(\varsigma \rightarrow \infty\) prove \(\lim _{\varsigma \rightarrow \infty }\frac{\mathbb {E}\{\mid T_n(\varsigma )\mid \}}{\varsigma }=0\).

Hence, queues \(T_{n,m}^t\) are mean rate stable from Definition 1. Similarly, we can prove that queues \(Q_{n,m}^t\) are mean rate stable as well.

(b) After having summed over \(t\in \{0,1,\cdots ,\varsigma -1\}\) for Eq. (17), we get

$$\begin{aligned} \mathbb {{E}}[L({\varvec{\Theta }}^{\varsigma -1})|{\varvec{\Theta }}^{t}]-\mathbb {{E}}[L({\varvec{\Theta }}^{0})]-V\sum _{t=0}^{\varsigma -1} \mathbb {{E}}[U^{t}|{\varvec{\Theta }}^{t}] \le B\varsigma -V \varsigma \overline{U}^{opt}. \end{aligned}$$

Then, following from the general derivation in [8], we get

$$\begin{aligned} -\frac{\mathbb {{E}}[L({\varvec{\Theta }}^{0})]}{\varsigma V}+\overline{U}^{opt} \le \frac{B}{V}+\frac{1}{\varsigma }\sum _{t=0}^{\varsigma -1}\mathbb {{E}}[U^{t}|{\varvec{\Theta }}^{t}]. \end{aligned}$$

Taking limit as \(\varsigma \rightarrow \infty\), we comes the solution that \(\overline{U} \ge \overline{U}^{opt}- B/V\).

(c). Summing Eq. (17) over \(t\in \{0,1,\cdots ,\varsigma -1\}\), we get

$$\begin{aligned} \mathbb {{E}}[L({\varvec{\Theta }}^{\varsigma -1})|{\varvec{\Theta }}^{t}]-\mathbb {{E}}[L({\varvec{\Theta }}^{0})] -V\sum _{t=0}^{\varsigma -1} \mathbb {{E}}[U^{t}|\mathbf {Q}^{t}] \le B\tau -V\varsigma \overline{U}^{opt}-\varepsilon \sum _{t=0}^{\varsigma -1}\sum _{n,m}\mathbb {{E}}\left[ Q_{n,m}^t\right] . \end{aligned}$$

Similarly, employing the derivation method, we get

$$\begin{aligned} \frac{\mathbb {{E}}[L(\mathbf {Q}^{0})]}{\varsigma }-V\frac{1}{\varsigma }\sum _{t=0}^{\varsigma -1} \mathbb {{E}}[U^{t}|\mathbf {Q}^{t}]\le B-V \overline{U}^{opt}-\varepsilon \frac{1}{\varsigma }\sum _{t=0}^{\varsigma -1}\sum _{n,m}\mathbb {{E}}\left[ Q_{n,m}^t\right] , \end{aligned}$$

Taking the limit as \(\varsigma \rightarrow \infty\) and dividing by \(\varepsilon\), we have

$$\begin{aligned} \lim _{\varsigma \rightarrow \infty } \frac{1}{\varsigma }\sum _{t=0}^{\varsigma -1}\sum _{n,m}\mathbb {{E}}\left[ Q_{n,m}^t\right] \le \frac{B+V\left( U_{\max }-\overline{U}^{opt} \right) }{\varepsilon }, \end{aligned}$$

based on the Proposition 1. Thus, the theorem for time averaged queues is proved.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, L., Yang, Q., Wu, W. et al. Rate allocation and relaying strategy adaption in wireless relay networks. Wireless Netw 24, 2669–2683 (2018). https://doi.org/10.1007/s11276-017-1498-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-017-1498-x

Keywords

Navigation