Skip to main content
Log in

Average effective degrees of freedom (AEDoF) maximization with interference alignment in small cell networks

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

The emergence of small cells provides a cost-effective way to satisfy users’ explosive traffic requirements. The massive deployment of small cells, nevertheless, causes severe inter-cell interference in Orthogonal Frequency Division Multiple-Access -based cellular networks. As such, conventional interference management strategies may be inefficient and interference alignment (IA) has been proposed as a promising technology to cope with inter-cell interference. To perfectly align all interference in a reduced-dimensional subspace, IA transmitters generally call for global channel state information (CSI) across small cell networks through receivers’ feedback. However, the number of total feedback bits scales as the square of the number of small cells. Hence, IA achieves a greater multiplexing gain at the cost of substantial overhead. To enable a tradeoff between multiplexing gain and overhead reduction, in this paper we present a new metric termed average effective degrees of freedom (AEDoF), which embodies the average degrees of freedom of small cell networks with CSI overhead considered. Furthermore, for reducing the computational complexity, we propose a graph-based clustering algorithm to solve the formulated AEDoF maximization problem. Simulation results verify that our proposed algorithm is of low complexity and achieves the maximum spectrum efficiency among several existing clustering methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Andrews, J. G., Claussen, H., Dohler, M., Rangan, S., & Reed, M. C. (2012). Femtocells: Past, present, and future. IEEE Journal on Selected Areas in Communications, 30(3), 497–508.

    Article  Google Scholar 

  2. Cadambe, V. R., & Jafar, S. A. (2008). Interference alignment and degrees of freedom of the-user interference channel. IEEE Transactions on Information Theory, 54(8), 3425–3441.

    Article  MathSciNet  MATH  Google Scholar 

  3. El Ayach, O., Peters, S. W., & Heath, R. W. (2013). The practical challenges of interference alignment. IEEE Wireless Communications, 20(1), 35–42.

    Article  Google Scholar 

  4. El Ayach, O., Lozano, A., & Heath, R. W. (2012). On the overhead of interference alignment: Training, feedback, and cooperation. IEEE Transactions on Wireless Communications, 11(11), 4192–4203.

    Article  Google Scholar 

  5. Mungara, R. K., George, G., & Lozano, A. (2014). Overhead and spectral efficiency of pilot-assisted interference alignment in time-selective fading channels. IEEE Transactions on Wireless Communications, 13(9), 4884–4895.

    Article  Google Scholar 

  6. Tresch, R., & Guillaud, M. (2009). Clustered interference alignment in large cellular networks. 2009 IEEE 20th international symposium on personal, indoor and mobile radio communications (pp. 1024–1028).

  7. Chen, S., & Cheng, R. S. (2014). Clustering for interference alignment in multiuser interference network. IEEE Transactions on Vehicular Technology, 63(6), 2613–2624.

    Article  Google Scholar 

  8. Zhang, Y., Zhou, Z., Li, B., Gu, C., & Shu, R. (2015). Partial interference alignment for downlink multi-cell multi-input-multi-output networks. IET Communications, 9(6), 836–843.

    Article  Google Scholar 

  9. Kavasoglu, F. C., Huang, Y., & Rao, B. D. (2014). Semi-blind interference alignment techniques for small cell networks. IEEE Transactions on Signal Processing, 62(23), 6335–6348.

    Article  MathSciNet  Google Scholar 

  10. Wu, Z., Jiang, L., Ren, G., Zhao, N., & Zhao, Y. (2015). A novel joint spatial-code clustered interference alignment scheme for large-scale wireless sensor networks. Sensors, 15(1), 1964–1997.

    Article  Google Scholar 

  11. Lertwiram, N., Popovski, P., & Sakaguchi, K. (2012). A study of trade-off between opportunistic resource allocation and interference alignment in femtocell scenarios. IEEE Wireless Communications Letters, 1(4), 356–359.

    Article  Google Scholar 

  12. Peters, S. W., & Heath, R. W. (2012). User partitioning for less overhead in MIMO interference channels. IEEE Transactions on Wireless Communications, 11(2), 592–603.

    Article  Google Scholar 

  13. Meng, Y., Li, J., Li, H., & Pan, M. (2015). A transformed conflict graph-based resource-allocation scheme combining interference alignment in OFDMA Femtocell Networks. IEEE Transactions on Vehicular Technology, 64(10), 4728–4737.

    Article  Google Scholar 

  14. Castanheira, D., Silva, A., & Gameiro, A. (2014). Set optimization for efficient interference alignment in heterogeneous networks. IEEE Transactions on Wireless Communications, 13(10), 5648–5660.

    Article  Google Scholar 

  15. Castanheira, D., Silva, A., & Gameiro, A. (2015). Limited Intersystem Information Exchange Method for Heterogeneous Networks. IEEE Communications Letters, 19(9), 1656–1659.

    Article  Google Scholar 

  16. Almers, P., Bonek, E., Burr, A., Czink, N., Debbah, M., & Degli-Esposti, V. (2007). Survey of channel and radio propagation models for wireless MIMO systems. EURASIP Journal on Wireless Communications and Networking, 2007(1), 56–56.

    Article  Google Scholar 

  17. Ruan, L., Lau, V. K., & Win, M. Z. (2013). The feasibility conditions for interference alignment in MIMO networks. IEEE Transactions on Signal Processing, 61(8), 2066–2077.

    Article  Google Scholar 

  18. Bresler, G., Cartwright, D., & Tse, D. (2014). Feasibility of interference alignment for the MIMO interference channel. IEEE Transactions on Information Theory, 60(9), 5573–5586.

    Article  MathSciNet  MATH  Google Scholar 

  19. Yetis, C. M., Gou, T., Jafar, S. A., & Kayran, A. H. (2010). On feasibility of interference alignment in MIMO interference networks. IEEE Transactions on Signal Processing, 58(9), 4771–4782.

    Article  MathSciNet  Google Scholar 

  20. El Ayach, O., & Heath, R. W. (2012). Interference alignment with analog channel state feedback. IEEE Transactions on Wireless Communications, 11(2), 626–636.

    Article  Google Scholar 

  21. Gou, T., & Jafar, S. A. (2010). Degrees of freedom of the user MIMO interference channel. IEEE Transactions on Information Theory, 56(12), 6040–6057.

    Article  MathSciNet  MATH  Google Scholar 

  22. West, D. B., et al. (2001). Introduction to graph theory (Vol. 2). Upper Saddle River: Prentice hall.

    Google Scholar 

  23. Arslan, M. Y., Yoon, J., Sundaresan, K., Krishnamurthy, S. V., & Banerjee, S. (2011). FERMI: a femtocell resource management system for interference mitigation in OFDMA networks. Proceedings of the 17th annual international conference on Mobile computing and networking (pp. 25–36).

  24. Ning, G., Yang, Q., Kwak, K. S., & Hanzo, L. (2012). Macro-and femtocell interference mitigation in OFDMA wireless systems. IEEE Global Communications Conference, 5068–5073.

  25. 3rd Generation Partnership Project (3GPP). (2012). Further enhancements to lte time division duplex (tdd) for downlink-uplink (dl-ul) interference management and traffic adaptation (release 11). TR 36.828 V11.0.0.

Download references

Acknowledgements

This work is supported by the National Key Research and Development Program of China (2016YFB0501004), the National Natural Science Foundation of China (91638202, 91338115, 61231008, 61401326, 61571351), National S&T Major Project (2015ZX03002006), the Fundamental Research Funds for the Central Universities (WRYB142208, JB140117), the 111 Project (B08038), SAST (201454), and Natural Science Basic Research Plan in Shaanxi Province of China (2016JQ6054).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongyan Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, M., Li, H., Li, J. et al. Average effective degrees of freedom (AEDoF) maximization with interference alignment in small cell networks. Wireless Netw 24, 981–991 (2018). https://doi.org/10.1007/s11276-017-1499-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-017-1499-9

Keywords

Navigation