Abstract
Global positioning system (GPS) on smart phones is often either unavailable or inaccurate in urban and natural canyons, indoors, and in forests. Hence it is augmented by use of other available radio frequency (RF) signals, such as WiFi with radio frequency identification and cellular, using their received signal strength, time difference of arrival and even angle of arrival. A novel methodology developed by our group has shown that using local magnetic field intensity mapping based on interval analysis performs better at geolocation than RF based augmentation where GPS is not accessible. In this article, we have extended the algorithms and developed using topographical maps-maps of local gravitational inclination vector to augment geolocation. Sensor measurements on the smart phones are used to construct the topographic maps and aid smart phone’s geolocation through our novel algorithms. Experimental results show the potential of our algorithms on uneven outdoors terrain.
Similar content being viewed by others
References
Bajaj, R., Ranaweera, S. L., & Agrawal, D. P. (2002). GPS: Location-tracking technology. Computer, 4, 9294.
Rappaport, T. (1996). GWireless communications, principles and practice. Prentice Hall: IEEE Press.
Sayed, A. H., & Tarighat, A. (2005). Network-based wireless location, challenges faced in developing techniques for accurate wireless location information. IEEE Signal Processing Magazine, 22(4), 2440.
Bekkali, A., Sanson, H., & Matsumoto, M. (2007). RFID indoor positioning based on probabilistic RFID map and Kalman filtering. In Proceedings of IEEE international conference on wireless and mobile computing, networking and communications (pp. 21–27).
Taniuchi, D., Liu, X., Nakai, D., & Maekawa, T. (2015). Spring model based collaborative indoor position estimation with neighbor mobile devices. IEEE Journal of Selected Topics in Signal Processing, 9(2), 268277.
Lee, K., Oh. J., & You K. (2016). TDOA/AOA based geolocation using Newton method under NLOS environment. In Proceedings of IEEE international conference on cloud computing and big data analysis (pp. 373–377).
Cui, Y., An, R., & Ariyur, K. B. (2015). Cellphone geolocation via magnetic mapping. Automatica, 51, 70–79.
Jaulin, L., Kieffer, M., Didrit, O., & Walter, E. (2001). Applied interval analysis, with examples in parameter and state estimation. In Robust control and robotics (pp. 11–32). Springer.
Cui, Y., & Ariyur, K. B. (2012). Augmenting cell phone geolocation via magnetic mapping. In: Proceedings of ION GNSS, Nashville, Tennessee, USA, Sep., 2012 (pp. 2469–2473).
Kim, J. (2015). Using topography to aid cell phone geolocation. Master Thesis, AAI10056388.
Van Loan, C. (1992). Computational frameworks for the fast Fourier transform (pp. 44–49). SIAM.
Cooley, J. W., & Tukey, J. W. (1965). An algorithm for the machine calculation of complex Fourier series. Mathematics of Computation, 19(90), 297–301.
Mersereau, R. M., & Speake, T. C. (1981). A unified treatment of Cooley–Tukey algorithms for the evaluation of the multidimensional DFT. IEEE Transactions on Acoustics, Speech and Signal Processing, 29(5), 1011–1018.
Heimo, H., Lazansky, J., & Marik, V. (1995). Information management in computer integrated manufacturing (p. 220). Springer.
Kuo, A. D. (2001). A simple model of bipedal walking predicts the preferred speed-step length relationship. Journal of Biomechanical Engineering, 123, 264–269.
Cui, Y., & Ariyur, K. B. (2011). Bounding inertial drift with human gait dynamics for personal navigation. In Proceedings of IEEE international system conference, Montreal, Canada (pp. 28–33).
Kalman, R. E. (1960). A new approach to linear filtering and prediction problems. Journal of Basic Engineering, 82(1), 3545.
Slabaugh, G. G. (1999). Computing Euler angles from a rotation matrix. 39–63.
Moore, R. E., Kearfott, R. B. & Cloud, M. J. (2009). Introduction to interval analysis (pp. 179–193). SIAM.
Kieffer, M., Jaulin, L., & Walter, E. (2000). Robust autonomous localization using interval analysis. Reliable Computing, 6(3), 337362.
Widnall, S., & Bonnifait, Ph. (2009). Lecture L3-vectors. Matrices and coordinate transformations. Dynamics (pp. 1–15).
Hinze, W. J., Von Frese, R. R., & Saad, A. H. (2013). Gravity and magnetic exploration: principles, practices, and applications (p. 130). Cambridge: Cambridge University Press.
U.S. climate data. (2015). Map of West Lafayette—Indiana. http://www.usclimatedata.com/map.php?location=USIN0707.
Clapham, C., & Nicholson, J. (2009). Oxford Concise Dictionary of Mathematics. Gradient (p. 348). Oxford: OUP.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Kim, J., Cui, Y. & Ariyur, K.B. Using topography to aid smart phones geolocation. Wireless Netw 24, 2735–2748 (2018). https://doi.org/10.1007/s11276-017-1500-7
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11276-017-1500-7