Skip to main content
Log in

Two-tier dynamic load balancing in SDN-enabled Wi-Fi networks

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

This work proposes a Software Defined Networking (SDN) solution to address Wi-Fi congestion due to an unevenly distributed load among access points (APs). The conventional methods generally let client stations learn of APs’ load status and select APs distributively. However, such a client-driven approach lacks a global view to make precise load balancing decisions and may result in repeated changes in client-AP association. Although several studies proposed more efficient network-controlled methods to carry out Wi-Fi load balancing, some of them are distributed methods incurring excessive message exchange among customized APs, while the rest centralized methods are found to burden the central controller with unnecessary AP association decisions. In contrast, our solution adopts standardized OpenFlow protocol and SDN controller technology to Wi-Fi networks, organizing the SDN controller and the APs into a two-tier architecture so that the controller can evaluate the degree of load balancing among the APs and decide up to which load level the APs can accept association requests without consulting the controller. From our experiment results, our solution improves Wi-Fi’s load balancing degree by 34–41%, and yields an improvement of 28–36% in Wi-Fi’s re-association time over generic centralized load balancing methods with positive control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. In our experiment, \(\eta\) is set to 0.2 by default.

References

  1. Tang, D., & Baker, M. (1999). Analysis of a metropolitan-area wireless network. In Proceedings of ACM mobicom (pp 13–23).

  2. Tang, D., & Baker, M. (2000). Analysis of a local-area wireless network. In Proceedings of ACM mobicom (pp. 1–10).

  3. Balachandran, A., Voelker, G. M., Bahl, P., & Rangan, P. V. (2002). Characterizing user behavior and network performance in a public wireless LAN. In Proceedings of ACM SIGMETRICS (pp. 195–205).

    Article  Google Scholar 

  4. Henderson, T., Kotz, D., & Abyzov, I. (2004). The changing usage of a mature campus-wide wireless network. In Proceedings of ACM mobicom (pp. 187–201).

  5. Jardosh, A. P., Ramachandran, K. N., Almeroth, K. C., & Belding-Royer, E. M. (2005). Understanding congestion in IEEE 802.11B wireless networks. In Proceedings of ACM IMC (pp. 25–25).

  6. Suri, S., Tóth, C. D., & Zhou, Y. (2007). Selfish load balancing and atomic congestion games. Algorithmica, 47(1), 79–96.

    Article  MathSciNet  Google Scholar 

  7. Mittal, K., Belding, E. M., & Suri, S. (2008). A game-theoretic analysis of wireless access point selection by mobile users. Computer Communications, 31(10), 2049–2062.

    Article  Google Scholar 

  8. Xu, F., Tan, C. C., Li, Q., Yan, G., & Wu, J. (2010). Designing a practical access point association protocol. In Proceedings of INFOCOM (pp. 1361–1369).

  9. Bigham, J., Wang, Y., & Cuthbert, L. G. (2004). Intelligent radio resource management for IEEE 802.11 WLAN. In Proceedings of WCNC (pp. 1365–1370).

  10. Bejerano, Y., & Han, S.-J. (2009). Cell breathing techniques for load balancing in wireless LANs. IEEE Transactions on Mobile Computing, 8(6), 735–749.

    Article  Google Scholar 

  11. Stanley, D., Montemurro, M., & Calhoun, P. R. (2015). Control and provisioning of wireless access points (CAPWAP) protocol specification. IETF RFC 5415, October 14.

  12. Balachandran, A., Bahl, P., & Voelker, G. M. (2002). Hot-spot congestion relief in public-area wireless network. In Proceedings of WMCSA (pp. 70–80).

  13. Munos H. V., Aleo, V., & Karlsson, G. (2004). Load balancing in overlapping wireless LAN cells. In Proceedings of IEEE ICC pp. 3833–3836.

  14. Bejerano, Y., Han, S.-J., & Li, E. L. (2007). Fairness and load balancing in wireless LANs using association control. IEEE/ACM Transactions on Networking, 15(3), 560–573.

    Article  Google Scholar 

  15. Duo, Z., & Chen, Z. (2009). Centralized wireless LAN load balancing. US Patent No. 7,480,264, January 20.

  16. Iyer, P. J., Narasimhan, P., Andrade, M., & Taylor, J. (2011). System and method for centralized station management. US Patent No. 7,969,937, June 28.

  17. Bernardos, C. J., de la Oliva, A., Serrano, P., Banchs, A., Contreras, L. M., Jin, H., et al. (2014). An architecture for software defined wireless networking. IEEE Wireless Communications, 21(3), 52–61.

    Article  Google Scholar 

  18. Cao, B., He, F., Li, Y., Wang, C., & Lang, W. (2015). Software defined virtual wireless network: Framework and challenges. IEEE Network, 29(4), 6–12.

    Article  Google Scholar 

  19. Yen, L.-H., Yeh, T.-T., & Chi, K.-H. (2009). Load balancing in IEEE 802.11 networks. IEEE Internet Computing, 13(1), 56–64.

    Article  Google Scholar 

  20. Vasudevan, S., Papagiannaki, K., Diot, C., Kurose, J., & Towsley, D. (2005). Facilitating access point selection in IEEE 802.11 wireless networks. In Proceedings of IMC (pp. 293–298).

  21. Gong, H., & Kim, J. W. (2008). Dynamic load balancing through association control of mobile users in Wi-Fi networks. IIEEE Transactions on Consumer Electronics, 54(2), 342–348.

    Article  Google Scholar 

  22. Kreutz, D., Ramos, F. M., Verissimo, P. E., Rothenberg, C. E., Azodolmolky, S., & Uhlig, S. (2015). Software defined networking: A comprehensive survey. In Proceedings of IEEE, Vol. 103, No. 1 (pp. 14–76).

    Article  Google Scholar 

  23. McKeown, N., Anderson, T. Balakrishnan, H., Parulkar, G., Peterson, L., Rexford, J. et al. (2008). OpenFlow: Enabling innovation in campus networks. SIGCOMM Computer Communication Review, 38(2), 69–74.

    Article  Google Scholar 

  24. Open Networking Foundation. OpenFlow switch specification version 1.3.0. https://www.opennetworking.org/, Jun 2012.

  25. Costanzo, S., Galluccio, L., Morabito, G., & Palazzo, S. (2012). Software defined wireless networks: Unbridling SDNs. In Proceedings of European workshop on software defined networking (pp. 1–6).

  26. Ali-Ahmad, H., Cicconetti, C., de la Oliva, A., Mancuso, V., Sama, M. R., Seite, P., & Sivasothy, S. (2013). An SDN-based network architecture for extremely dense wireless networks. In Proceedings of IEEE SDN for future networks and services (pp. 1–7).

  27. Chiu, D.-M., & Jain, R. (1989). Analysis of the increase and decrease algorithms for congestion avoidance in computer networks. Computer Networks and ISDN Systems, 17(1), 1–14.

    Article  Google Scholar 

  28. EstiNet Technologies. http://www.estinet.com/.

  29. Sriram, N. RYU Controller. http://sdnhub.org/tutorials/ryu/.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chih Chiang Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, YD., Wang, C.C., Lu, YJ. et al. Two-tier dynamic load balancing in SDN-enabled Wi-Fi networks. Wireless Netw 24, 2811–2823 (2018). https://doi.org/10.1007/s11276-017-1504-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-017-1504-3

Keywords

Navigation