Skip to main content

Advertisement

Log in

QoS-based adaptive power control scheme for co-located WBANs: a cooperative bargaining game theoretic perspective

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

This paper proposes a new Quality of Service (QoS)-based adaptive power control (QPC) scheme for interference mitigation among co-located wireless body area networks (WBANs). The problem can be formulated as a Nash bargaining game. The proposed solution not only achieves the Pareto optimal solution, but also guarantees the fairness among competing players. Owing to the special features of WBANs, the proposed utility function considers the urgency of the sensed data and the energy efficiency of sensors, which are indicated by emergency index and energy consumption factor, respectively. Thus, the transmission power is adjusted dynamically to adapt to the different QoS requirements under the constraints of permissible maximum transmission power and desired minimum signal-to-interference-plus-noise-ratio (SINR). Moreover, a unified analytical framework based on Lagrange multiplier approach is adopted to optimize the Nash product, where near optimal power control strategy is derived iteratively using the fix-point method. Extensive simulation results show that compared with the existing benchmark algorithms, the proposed QPC scheme has better performance in terms of energy efficiency, network reliability, Pareto optimality and fairness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Cavallari, R., Martelli, F., Rosini, R., Buratti, C., & Verdone, R. (2014). A survey on wireless body area networks: Technologies and design challenges. IEEE Communications Surveys & Tutorials, 16(3), 1635–C1657.

    Article  Google Scholar 

  2. Movassaghi, S., Abolhasan, M., Lipman, J., Smith, D., & Jamalipour, A. (2014). Wireless body area networks: A survey. IEEE Communications Surveys & Tutorials, 16(3), 1658–1686.

    Article  Google Scholar 

  3. Fang, G., Dutkiewicz, E., Yu, K., Vesilo, R., & Yu, Y. (2010). Distributed inter-network interference coordination for wireless body area networks. 2010 IEEE global telecommunications conference (GLOBECOM) (pp. 1–5), Florida, USA.

  4. Kazemi, R., Vesilo, R., Dutkiewicz, E., & Fang, G. (2010). Inter-network interference mitigation in wireless body area networks using power control games. 2010 International symposium on communications and information technologies (ISCIT) (pp. 81–86), Tokyo, Japan.

  5. Zou, L., Liu, B., Chen, C., & Chen, C. W. (2014). Bayesian game based power control scheme for inter-WBAN interference mitigation. 2014 IEEE global communications conference (GLOBECOM), (pp. 240–245), Texas, USA.

  6. Zhao, X., Liu, B., Chen, C., & Chen, C. W. (2015). QoS-driven power control for inter-WBAN interference mitigation. 2015 IEEE global communications conference (GLOBECOM) (pp. 1–6), California, USA.

  7. Meharouech, A., Elias, J., Paris, S., & Mehaoua, A. (2015). A game theoretical approach for interference mitigation in body-to-body networks. 2015 IEEE international conference on communication workshop (ICCW) (pp. 259–264), Selangor, Malaysia.

  8. Meharouech, A., Elias, J., & Mehaoua, A. (2016). A two-stage game theoretical approach for interference mitigation in Body-to-Body Networks. Computer Networks, 95, 15–34.

    Article  Google Scholar 

  9. Nash Jr, J. F. (1950). The bargaining problem. Econometrica: Journal of the Econometric Society, 18(2), 155–162.

    Article  MathSciNet  Google Scholar 

  10. Misra, S., Moulik, S., & Chao, H. C. (2015). A cooperative bargaining solution for priority-based data-rate tuning in a wireless body area network. IEEE Transactions on Wireless Communications, 14(5), 2769–2777.

    Article  Google Scholar 

  11. Le, T. T., & Moh, S. (2015). Interference mitigation schemes for wireless body area sensor networks: A comparative survey. Sensors, 15(6), 13805–13838.

    Article  Google Scholar 

  12. Kazemi, R., Vesilo, R., Dutkiewicz, E., & Liu, R. P. (2012). Reinforcement learning in power control games for internetwork interference mitigation in Wireless Body Area Networks. 2012 International symposium on communications and information technologies (ISCIT) (pp. 256–262), Gold Coast, Australia.

  13. Dong, J., Smith, D., & Hanlen, L. (2016). Socially optimal coexistence of wireless body area networks enabled by a non-cooperative game. ACM Transactions on Sensor Networks (TOSN), 12(4), 26.

    Google Scholar 

  14. Zhang, Z., Wang, H., Wang, C., & Fang, H. (2013). Interference mitigation for cyber-physical wireless body area network system using social networks. IEEE Transactions on Emerging Topics in Computing, 1(1), 121–132.

    Article  Google Scholar 

  15. Yang, C., Li, J., Anpalagan, A., & Guizani, M. (2016). Joint power coordination for spectral-and-energy efficiency in heterogeneous small cell networks: a bargaining game-theoretic perspective. IEEE Transactions on Wireless Communications, 15(2), 1364–1376.

    Article  Google Scholar 

  16. Yang, C. G., Li, J. D., & Tian, Z. (2010). Optimal power control for cognitive radio networks under coupled interference constraints: A cooperative game-theoretic perspective. IEEE Transactions on Vehicular Technology, 59(4), 1696–1706.

    Article  Google Scholar 

  17. Azimi, S. M., Manshaei, M. H., & Hendessi, F. (2016). Cooperative primary-secondary dynamic spectrum leasing game via decentralized bargaining. Wireless Networks, 22(3), 755–764.

    Article  Google Scholar 

  18. Ni, Q., & Zarakovitis, C. C. (2012). Nash bargaining game theoretic scheduling for joint channel and power allocation in cognitive radio systems. IEEE Journal on Selected Areas in Communications, 30(1), 70–81.

    Article  Google Scholar 

  19. Zhang, H., Jiang, C., Beaulieu, N. C., Chu, X., Wang, X., & Quek, T. Q. (2015). Resource allocation for cognitive small cell networks: A cooperative bargaining game theoretic approach. IEEE Transactions on Wireless Communications, 14(6), 3481–3493.

    Article  Google Scholar 

  20. Han, Z., Ji, Z., & Liu, K. R. (2005). Fair multiuser channel allocation for OFDMA networks using Nash bargaining solutions and coalitions. IEEE Transactions on Communications, 53(8), 1366–1376.

    Article  Google Scholar 

  21. Kim, S. (2016). Timed bargaining-based opportunistic routing model for dynamic vehicular ad hoc network. EURASIP Journal on Wireless Communications and Networking, 2016(1), 1.

    Article  Google Scholar 

  22. Wang, G., & Liu, T. (2016). Resource allocation for M2M-enabled cellular network using Nash bargaining game theory. Peer-to-Peer Networking and Applications. doi:10.1007/s12083-016-0477-9.

    Article  Google Scholar 

  23. Zhang, G., Zhang, H., Zhao, L., Wang, W., & Cong, L. (2009). Fair resource sharing for cooperative relay networks using Nash bargaining solutions. IEEE Communications Letters, 13(6), 381–383.

    Article  Google Scholar 

  24. Zhang, Z., Shi, J., Chen, H. H., Guizani, M., & Qiu, P. (2008). A cooperation strategy based on Nash bargaining solution in cooperative relay networks. IEEE Transactions on Vehicular Technology, 57(4), 2570–2577.

    Article  Google Scholar 

  25. Ngo, D. T., Le, L. B., Le-Ngoc, T., Hossain, E., & Kim, D. I. (2012). Distributed interference management in two-tier CDMA femtocell networks. IEEE Transactions on Wireless Communications, 11(3), 979–989.

    Article  Google Scholar 

  26. Chandrasekhar, V., Andrews, J. G., Muharemovic, T., Shen, Z., & Gatherer, A. (2009). Power control in two-tier femtocell networks. IEEE Transactions on Wireless Communications, 8(8), 4316–4328.

    Article  Google Scholar 

  27. Sayrafian-Pour, K., Yang, W. B., Hagedorn, J., Terrill, J., & Yazdandoost, K. Y. (2009). A statistical path loss model for medical implant communication channels. IEEE 20th international symposium on personal, indoor and mobile radio communications. PIMRC 2009 (pp. 2995–2999). Japan: Tokyo.

  28. Yin, H., & Liu, H. (2000). An efficient multiuser loading algorithm for OFDM-based broadband wireless systems. 2000 IEEE global telecommunications conference (GLOBECOM) (Vol. 1, pp. 103–107), California, USA.

  29. Tassiulas, L., & Sarkar, S. (2002). Maxmin fair scheduling in wireless networks. In Proceedings IEEE INFOCOM 2002. Twenty-first annual joint conference of the IEEE Computer and Communications Societies, New York, USA (Vol. 2, 763–772).

  30. Jain, R., Chiu, D. M., & Hawe, W. R. (1984). A quantitative measure of fairness and discrimination for resource allocation in shared computer system (Vol. 38). Hudson, MA: Eastern Research Laboratory, Digital Equipment Corporation.

    Google Scholar 

  31. IEEE Standard for Information technology—Local and metropolitan area networks—Specific requirements—Part 15.4: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Low Rate Wireless Personal Area Networks (WPANs), IEEE Std 802.15.4-2006 (Revision of IEEE Std 802.15.4-2003), 2006, 1–C320.

Download references

Acknowledgements

This research was partly supported in major Program of National Natural Science Foundation of China (No.61190114).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongmei Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Sun, Y. & Ji, Y. QoS-based adaptive power control scheme for co-located WBANs: a cooperative bargaining game theoretic perspective. Wireless Netw 24, 3129–3139 (2018). https://doi.org/10.1007/s11276-017-1521-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-017-1521-2

Keywords

Navigation