Skip to main content

Advertisement

Log in

Towards overhead mitigation in state-free geographic forwarding protocols for wireless sensor networks

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Routing has been the most consumptive of all processes engaged in the Wireless Sensor Network communications, thus improving this consumptive process by minimizing the number of overhead bits transmitted is vital. This paper investigates the State-free Geographic Forwarding (SGF) protocols, which employ the cross-layering concept that combines the tasks of the routing and Medium Access Control (MAC) layer to minimize energy consumption. Unfortunately, the numerous SGF protocols proposed in the past utilize a modified variant of the basic 802.11 Distributed Coordinated Function MAC protocol for their routing operations due to its ability to mitigate the hidden terminal problem using the four-way handshake mechanism. The mechanism, however, incurs a substantial amount of overhead, which subsequently affects the end-to-end delay and energy consumption of the network. In line with these, a Directional Compact Geographic Forwarding (DCGF) approach is proposed to mitigate the excessive overhead generated due to the repeated subjection of a multi-hop network to the four-way handshake mechanism. The proposed DCGF utilizes a smart antenna and Quality of Service (QoS) aware aggregation approach to mitigate the spread in a broadcast received and multiple unicast transmissions, respectively. The simulation results show that the proposed DCGF significantly outperforms its base protocol (Dynamic Window Secure Implicit Geographic Forwarding) in terms of message overhead, energy consumed and end-to-end delay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Source: [10]

Fig. 2

Source: [37]

Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Al-Karaki, J. N., & Kamal, A. E. (2004). Routing techniques in wireless sensor networks: A survey. IEEE Wireless Communications, 11(6), 6–28.

    Article  Google Scholar 

  2. Melodia, T., Vuran, M. C., & Pompili, D. (2005). The state of the art in cross-layer design for wireless sensor networks. In International workshop of the EuroNGI network of excellence (pp. 78–92), Springer.

  3. Pantazis, N. A., Nikolidakis, S. A., & Vergados, D. D. (2013). Energy-efficient routing protocols in wireless sensor networks: A survey. IEEE Communications Surveys & Tutorials, 15(2), 551–591.

    Article  Google Scholar 

  4. Son, S., Blum, B., He, T., & Stankovic, J. (2003). Igf: A state-free robust communication protocol for wireless sensor networks. Tech. Report Department. Comput. Sci. Univ. Virginia.

  5. Füßler, H., Widmer, J., Käsemann, M., Mauve, M., & Hartenstein, H. (2003). Contention-based forwarding for mobile ad hoc networks. Ad Hoc Networks, 1(4), 351–369.

    Article  Google Scholar 

  6. Zorzi, M., & Rao, R. R. (2003). Multihop performance of geographic random forwarding for ad hoc and sensor networks. In Global telecommunications conference, 2003. GLOBECOM’03 (Vol. 7, pp. 3948–3952), IEEE.

  7. Chen, D., Deng, J., & Varshney, P. K. (2005). A state-free data delivery protocol for multihop wireless sensor networks. In IEEE wireless communications and networking conference, 2005 (Vol. 3, pp. 1818–1823), IEEE.

  8. Lee, T., Qiao, C., Demirbas, M., & Xu, J. (2010). Abc: A simple geographic forwarding scheme capable of bypassing routing holes in sensor networks. Ad Hoc Networks, 8(4), 361–377.

    Article  Google Scholar 

  9. Galluccio, L., Leonardi, A., Morabito, G., & Palazzo, S. (2007). A mac/routing cross-layer approach to geographic forwarding in wireless sensor networks. Ad Hoc Networks, 5(6), 872–884.

    Article  Google Scholar 

  10. Hanapi, Z. M., Ismail, M., Jumari, K., & Mahdavi, M. (2009). Dynamic window secured implicit geographic forwarding routing for wireless sensor network. In World academy of science, engineering and technology. International conference on wireless communication and sensor network. Citeseer.

  11. Srisathapornphat, C., & Shen, C.-C. (2002). Coordinated power conservation for ad hoc networks. In IEEE international conference on communications, 2002. ICC 2002 (Vol. 5, pp. 3330–3335), IEEE.

  12. Amjad, M., Sharif, M., Afzal, M. K., & Kim, S. W. (2016). Tinyos-new trends, comparative views, and supported sensing applications: A review. IEEE Sensors Journal, 16(9), 2865–2889.

    Article  Google Scholar 

  13. Stojčev, M. K., Golubović, L. R., & Nikolić, T. R. (2011). Clocks, power and synchronization in duty-cycled wireless sensor nodes. Facta Universitatis-Series: Electronics and Energetics, 24(2), 183–208.

    Google Scholar 

  14. Akhtar, F., & Rehmani, M. H. (2015). Energy replenishment using renewable and traditional energy resources for sustainable wireless sensor networks: A review. Renewable and Sustainable Energy Reviews, 45, 769–784.

    Article  Google Scholar 

  15. Zhang, Y, Feng, C.-H., Demirkol, I, & Heinzelman, W. B. (2010). Energy-efficient duty cycle assignment for receiver-based convergecast in wireless sensor networks. In Global telecommunications conference (GLOBECOM 2010) (pp. 1–5), IEEE.

  16. Saraswat, J., & Bhattacharya, P. P. (2013). Effect of duty cycle on energy consumption in wireless sensor networks. International Journal of Computer Networks & Communications, 5(1), 125.

    Article  Google Scholar 

  17. Skiani, E. D., Mitilineos, S. A., & Thomopoulos, S. C. A. (2012). A study of the performance of wireless sensor networks operating with smart antennas. IEEE Antennas and Propagation Magazine, 54(3), 50–67.

    Article  Google Scholar 

  18. Leang, D., & Kalis, A. (2004). Smart sensordvb: Sensor network development boards with smart antennas. In International conference on communications, circuits and systems, 2004. ICCCAS 2004 (Vol. 2, pp. 1476–1480), IEEE.

  19. Choudhury, R. R., & Vaidya, N. H. (2003). Impact of directional antennas on ad hoc routing. In IFIP international conference on personal wireless communications (pp. 590–600). Springer.

  20. Korakis, T., Jakllari, G., & Tassiulas, L. (2003). A mac protocol for full exploitation of directional antennas in ad-hoc wireless networks. In Proceedings of the 4th ACM international symposium on mobile ad hoc networking & computing (pp. 98–107), ACM.

  21. Kolar, V., Rogers, P., & Abu-Ghazaleh, N. B. (2005). Route compaction for directional route discovery in manets. In IEEE international conference on wireless and mobile computing, networking and communications (WiMob’2005), (Vol. 3, pp. 101–108), IEEE.

  22. Felemban, E., Vural, S., Murawski, R., Ekici, E., Lee, K., Moon, Y., et al. (2010). Samac: A cross-layer communication protocol for sensor networks with sectored antennas. IEEE Transactions on Mobile Computing, 9(8), 1072–1088.

    Article  Google Scholar 

  23. Dimitriou, T., & Kalis, A. (2004). Efficient delivery of information in sensor networks using smart antennas. In International symposium on algorithms and experiments for sensor systems, wireless networks and distributed robotics (pp. 109–122), Springer.

  24. Cobo, L., Castro, H., & Quintero, A. (2015). A location routing protocol based on smart antennas for wireless sensor networks. Indian Journal of Science and Technology, 8(11), 2015.

    Article  Google Scholar 

  25. Rezaei, Z., & Mobininejad, S. (2012). Energy saving in wireless sensor networks. International Journal of Computer Science and Engineering Survey, 3(1), 23.

    Article  Google Scholar 

  26. Rajagopalan, R. & Varshney, P. K. (2006). Data aggregation techniques in sensor networks: A survey. Working paper, http://surface.syr.edu/eecs/22.

  27. Heinzelman, W. R., Chandrakasan, A., & Balakrishnan, H. (2000). Energy-efficient communication protocol for wireless microsensor networks. In Proceedings of the 33rd annual Hawaii international conference on system sciences (pp. 10-pp), IEEE.

  28. Lindsey, S., & Raghavendra, C. S. (2002). Pegasis: Power-efficient gathering in sensor information systems. In Aerospace conference proceedings (Vol. 3, pp. 3–1125), IEEE.

  29. Younis, O., & Fahmy, S. (2004). Heed: a hybrid, energy-efficient, distributed clustering approach for ad hoc sensor networks. IEEE Transactions on Mobile Computing, 3(4), 366–379.

    Article  Google Scholar 

  30. Villas, L. A., Boukerche, A., Ramos, H. S., Fernandes de Oliveira, H. A. B., de Araujo, R. B., & Ferreira Loureiro, A. A. (2013). Drina: A lightweight and reliable routing approach for in-network aggregation in wireless sensor networks. IEEE Transactions on Computers, 62(4), 676–689.

    Article  MathSciNet  MATH  Google Scholar 

  31. Kalpakis, K., Dasgupta, K., & Namjoshi, P. (2003). Efficient algorithms for maximum lifetime data gathering and aggregation in wireless sensor networks. Computer Networks, 42(6), 697–716.

    Article  MATH  Google Scholar 

  32. Jeong, J., Kim, J., Cha, W., Kim, H., Kim, S., & Mah, P. (2010). A qos-aware data aggregation in wireless sensor networks. In The 12th international conference on advanced communication technology (ICACT) (Vol. 1, pp. 156–161), IEEE.

  33. He, T., Blum, B. M., Stankovic, J. A., & Abdelzaher, T. (2004). Aida: Adaptive application-independent data aggregation in wireless sensor networks. ACM Transactions on Embedded Computing Systems (TECS), 3(2), 426–457.

    Article  Google Scholar 

  34. Troubleyn, E., Hoebeke, J., Moerman, I., & Demeester, P. (2014). Broadcast aggregation to improve quality of service in wireless sensor networks. International Journal of Distributed Sensor Networks, 10(3), 383678.

    Article  Google Scholar 

  35. He, T., Blum, B. M., Cao, Q., Stankovic, J. A., Son, S. H., & Abdelzaher, T. F. (2007). Robust and timely communication over highly dynamic sensor networks. Real-Time Systems, 37(3), 261–289.

    Article  MATH  Google Scholar 

  36. Wood, A. D., Fang, L., Stankovic, J.A., & He, T. (2006). Sigf: A family of configurable, secure routing protocols for wireless sensor networks. In Proceedings of the fourth ACM workshop on Security of ad hoc and sensor networks (pp. 35–48), ACM.

  37. Umar, I. A., Hanapi, Z. M., Sali, A., & Zulkarnain, Z. A. (2016). Fugef: A resource bound secure forwarding protocol for wireless sensor networks. Sensors, 16(6), 943.

    Article  Google Scholar 

  38. Hanapi, Z. M., & Ismail, M. (2014). Impact of blackhole and sybil attacks on dynamic windows secured implicit geographic forwarding routing protocol. IET Information Security, 8(2), 80–87.

    Article  Google Scholar 

  39. Abdelzaher, T., He, T., & Stankovic, J. (2004). Feedback control of data aggregation in sensor networks. In 2004 43rd IEEE conference on decision and control (CDC) (IEEE Cat. No.04CH37601) (Vol. 2, pp. 1490–1495).

  40. Wang, Q., & Yang, W. (2007). Energy consumption model for power management in wireless sensor networks. In 4th annual IEEE communications society conference on sensor, mesh and ad hoc communications and networks, 2007. SECON’07 (pp. 142–151), IEEE.

  41. Umer, T., Amjad, M., Afzal, M. K., & Aslam, M. (2016). Hybrid rapid response routing approach for delay-sensitive data in hospital body area sensor network. In Proceedings of the 7th international conference on computing communication and networking technologies (pp. 3), ACM.

Download references

Acknowledgements

This work is supported by the Research Grant UPM-FRGS-08-02-13-1364FR and the Tetfund through Kano University of Science and Technology, Wudil, Kano State, Nigeria.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Idris Abubakar Umar or Zurina Mohd Hanapi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Umar, I.A., Hanapi, Z.M., Sali, A. et al. Towards overhead mitigation in state-free geographic forwarding protocols for wireless sensor networks. Wireless Netw 25, 1017–1030 (2019). https://doi.org/10.1007/s11276-017-1651-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-017-1651-6

Keywords

Navigation