Skip to main content

Advertisement

Log in

Long-range and energy-efficient optical networking for tiny sensors

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Acquiring real time sensory data using remote swarms of tiny sensors depends on efficient wireless networking. Often, battery longevity of the sensors is a critical design requirement, which makes long-range RF transmission inadequate for this task. A common solution is to use short-range and energy-efficient RF protocols within the swarm, then communicate with the outside world via a capable agent or a networking gateway. In this paper we suggest an alternative networking model, which enables the swarm to operate independently, without the assistance of an intermediate proxy. Specifically, we present a networking model in which the sensors in the swarm transmit data using energy-efficient free space optical links (FSO). We discuss the details of aiming optical transmission interfaces in the directions of distant sinks, such as antenna towers, drones and even LEO-satellites. This FSO-based network architecture poses various data collection problems, which are related to the directional nature of optical transmitters and receivers. Using simulations we address several such problems, and demonstrate the viability of the model for sensory data collection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. Line of sight versus none line of sight.

  2. Various raging estimation methods can be used including SNR or RSSI, sonic ranging and even RF Time-of-Flight ranging.

  3. Note that this simulation is 2D, which implies that the sinks’ flying height is given and the nodes’ LOS/NLOS maps are receptive to that height.

References

  1. Akkaya, K., & Younis, M. (2004). Relocation of gateway for enhanced timeliness in wireless sensor networks. In 2004 IEEE international conference on performance, computing, and communications, pp. 471–476. IEEE.

  2. Akkaya, K., & Younis, M. (2005). A survey on routing protocols for wireless sensor networks. Ad hoc networks, 3(3), 325–349.

    Article  Google Scholar 

  3. Akkaya, K., Younis, M., & Bangad, M. (2005). Sink repositioning for enhanced performance in wireless sensor networks. Computer Networks, 49(4), 512–534.

    Article  Google Scholar 

  4. Arora, S. (1996). Polynomial time approximation schemes for Euclidean TSP and other geometric problems. In Proceedings of 37th annual symposium on foundations of computer science (pp. 2–11). IEEE.

  5. Arora, S. (2003). Approximation schemes for np-hard geometric optimization problems: A survey. Mathematical Programming, 97(1–2), 43–69.

    Article  MathSciNet  MATH  Google Scholar 

  6. Ben-Moshe, B., Carmi, P., & Katz, M. J. (2008). Approximating the visible region of a point on a terrain. GeoInformatica, 12(1), 21–36.

    Article  Google Scholar 

  7. Benmoshe, B., Gozlan, K., Shvalb, N., & Raskin, T. (2014). Micro robots for dynamic sensor networks. In 8th International workshop on wireless sensor, actuator and robot networks.

  8. Bloom, S. (2002). The physics of free space optics (pp. 1–22). Superior: AirFiber Inc.

    Google Scholar 

  9. Brown, M. J, Grimmond, S., & Ratti, C. (2001). Comparison of methodologies for computing sky view factor in urban environments. In International society of environmental hydraulics conference, Tempe, AZ.

  10. Burke, E. K., Gendreau, M., Hyde, M., Kendall, G., Ochoa, G., Ender Özcan, et al. (2013). Hyper-heuristics: A survey of the state of the art. Journal of the Operational Research Society, 64(12), 1695–1724.

    Article  Google Scholar 

  11. Caleffi, M., Akyildiz, I. F., & Paura, L. (2015). On the solution of the steiner tree np-hard problem via physarum bionetwork. IEEE/ACM Transactions on Networking, 23(4), 1092–1106.

    Article  Google Scholar 

  12. Caleffi, M., & Paura, L. (2009). Bio-inspired link quality estimation for wireless mesh networks. In IEEE International symposium on a world of wireless, mobile and multimedia networks & workshops, WoWMoM 2009 (pp. 1–6). IEEE.

  13. Chapman, L., & Thornes, J. E. (2004). Real-time sky-view factor calculation and approximation. Journal of Atmospheric and Oceanic Technology, 21(5), 730–741.

    Article  Google Scholar 

  14. De Silva, A. H. T. E., De Silva, D. D. N., Perera, K. D. C. J., Priyashantha, A. M. B., Sampath, D. P, Jayathilaka, W. A. D. M., et al. (2016). A novel mems motor based on thermal actuation. In Moratuwa engineering research conference (MERCon) (pp. 48–53). IEEE.

  15. Deng, P., Kavehrad, M., & Lou, Y. (2017). Mems-based beam steerable free space optical communication link for reconfigurable wireless data center. Proceedings of SPIE, 10128, 1012805–1012811.

    Article  Google Scholar 

  16. Dong, W., Sun, L. N., & Du, Z. J. (2007). Design of a precision compliant parallel positioner driven by dual piezoelectric actuators. Sensors and Actuators A: Physical, 135(1), 250–256.

    Article  Google Scholar 

  17. Fomin, F. V., & Lingas, A. (2002). Approximation algorithms for time-dependent orienteering. Information Processing Letters, 83(2), 57–62.

    Article  MathSciNet  MATH  Google Scholar 

  18. Fukui, R., Torii, A., & Ueda, A. (2001). Micro robot actuated by rapid deformation of piezoelectric elements. In Proceedings of 2001 international symposium on micromechatronics and human science, MHS (pp. 117–122). IEEE.

  19. Guzek, J. J., Petersen, C., Constantin, S., & Lipson, H. (2012). Mini twist: A study of long-range linear drive by string twisting. Journal of Mechanisms and Robotics, 4(1), 014501.

    Article  Google Scholar 

  20. Hammar, M., & Nilsson, B. J. (2002). Approximation results for kinetic variants of TSP. Discrete & Computational Geometry, 27(4), 635–651.

    Article  MathSciNet  MATH  Google Scholar 

  21. Henniger, H., & Wilfert, O. (2010). An introduction to free-space optical communications. Radioengineering, 19(2), 203–212.

    Google Scholar 

  22. Ilavarasi, K, & Joseph, K. S. (2014). Variants of travelling salesman problem: A survey. In 2014 International conference on information communication and embedded systems (ICICES) (pp. 1–7). IEEE.

  23. Jeon, S., & Toshiyoshi, H. (2017). Mems tracking mirror system for a bidirectional free-space optical link. Applied Optics, 56(24), 6720–6727.

    Article  Google Scholar 

  24. Jiang, D.,Ying, X., Han, Y., & Lv, Z. (2016). Collaborative multi-hop routing in cognitive wireless networks. Wireless Personal Communications, 86(2), 901–923.

    Article  Google Scholar 

  25. Killinger, D. (2002). Free space optics for laser communication through the air. Optics and Photonics News, 13(10), 36–42.

    Article  Google Scholar 

  26. Kruskal, J. B. (1956). On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society, 7(1), 48–50.

    Article  MathSciNet  MATH  Google Scholar 

  27. Last, M., Fisher, B., Ezekwe, C., Hubert, S., Patel, S., Hollar, S., et al. (2001). Video semaphore decoding for free-space optical communication. In Real-time imaging V (pp. 148–159). International Society for Optics and Photonics.

  28. Last, M. (2000). An 8 mm 3 digitally steered laser beam transmitter. In 2000 IEEE/LEOS international conference on optical MEMS (pp. 69–70). IEEE.

  29. Lawler, E. L., Lenstra, J. K., Kan, A. H. G. R., & Shmoys, D. B. (1985). The traveling salesman problem: A guided tour of combinatorial optimization (Vol. 3). New York: Wiley.

    MATH  Google Scholar 

  30. Lee, D.-T., & Schachter, B. J. (1980). Two algorithms for constructing a delaunay triangulation. International Journal of Computer & Information Sciences, 9(3), 219–242.

    Article  MathSciNet  MATH  Google Scholar 

  31. Leibowitz, B. S., Boser, B. E., & Pister, K. S. J. (2001). CMOS smart pixel for free-space optical communication. In Photonics west 2001-electronic imaging (pp. 308–318). International Society for Optics and Photonics.

  32. Leitgeb, E., Muhammad, S. S., Chlestil, C., Gebhart, M, & Birnbacher, U. (2005). Reliability of FSO links in next generation optical networks. In Proceedings of 2005 7th international conference on transparent optical networks (Vol. 1, pp. 394–401). IEEE.

  33. Lewis, I. T, Ledebuhr, A. G., Axelrod, T. S., Kordas, J. F., & Hills, R. (1991). Wide-field-of-view star tracker camera. In Orlando’91, Orlando, FL (pp. 2–12). International Society for Optics and Photonics.

  34. Li, W., & Wang, J. (2013). Effective adaptive kalman filter for mems-imu/magnetometers integrated attitude and heading reference systems. Journal of Navigation, 66(01), 99–113.

    Article  Google Scholar 

  35. Liebe, C. C. (2002). Accuracy performance of star trackers-a tutorial. IEEE Transactions on Aerospace and Electronic Systems, 38(2), 587–599.

    Article  Google Scholar 

  36. Liebe, C. C., Dennison, E. W., Hancock, B., Stirbl, R. C., & Pain, B. (1998). Active pixel sensor (APS) based star tracker. In 1998 IEEE aerospace conference (Vol. 1, pp. 119–127). IEEE.

  37. Lin, S., & Kernighan, B. W. (1973). An effective heuristic algorithm for the traveling-salesman problem. Operations Research, 21(2), 498–516.

    Article  MathSciNet  MATH  Google Scholar 

  38. Making internet access available and affordable for everyone. http://www.oneweb.world/, 2017.

  39. Malik, A., & Singh, P. (2015). Free space optics: Current applications and future challenges. International Journal of Optics, 2015, 7.

    Article  Google Scholar 

  40. Mazo M., Jr., Speranzon, A., Johansson, K. H., & Hu, X. (2004). Multi-robot tracking of a moving object using directional sensors. In Proceedings of the 2004 international conference on robotics and automation. IEEE.

  41. Mitchell, J. S. B. (1999). Guillotine subdivisions approximate polygonal subdivisions: A simple polynomial-time approximation scheme for geometric TSP, k-MST, and related problems. SIAM Journal on Computing, 28(4), 1298–1309.

    Article  MathSciNet  MATH  Google Scholar 

  42. Nadeem, F., Kvicera, V., Awan, M. S., Leitgeb, E., Muhammad, S., & Kandus, G. (2009). Weather effects on hybrid FSO/RF communication link. IEEE Journal on Selected Areas in Communications, 27(9), 1687–1697.

    Article  Google Scholar 

  43. Ramalingam, S., Bouaziz, S., Sturm, P., & Brand, M. (2009). Geolocalization using skylines from omni-images. In 2009 IEEE 12th international conference on computer vision workshops (ICCV workshops) (pp. 23–30). IEEE.

  44. Raza, U., Kulkarni, P., & Sooriyabandara, M. (2017). Low power wide area networks: An overview. IEEE Communications Surveys & Tutorials, 19(2), 855–873.

    Article  Google Scholar 

  45. Ruffier, F., Viollet, S., Amic, S., & Franceschini, N. (2003). Bio-inspired optical flow circuits for the visual guidance of micro air vehicles. In Proceedings of the 2003 international symposium on circuits and systems, ISCAS’03 (Vol. 3, pp. III–846). IEEE.

  46. Sabatini, A. M. (2011). Kalman-filter-based orientation determination using inertial/magnetic sensors: Observability analysis and performance evaluation. Sensors, 11(10), 9182–9206.

    Article  Google Scholar 

  47. Shoham, M. (2005). Twisting wire actuator. Journal of Mechanical Design, 127(3), 441–445.

    Article  MathSciNet  Google Scholar 

  48. Siekkinen, M., Hiienkari, M., Nurminen, J. K, & Nieminen, J. (2012). How low energy is bluetooth low energy? comparative measurements with zigbee/802.15. 4. In Wireless communications and networking conference workshops (WCNCW) (pp. 232–237). IEEE.

  49. Valavanis, K. P., & Vachtsevanos, G. J. (2014). Handbook of unmanned aerial vehicles. Berlin: Springer.

    MATH  Google Scholar 

  50. Watson, I. D., & Johnson, G. T. (1987). Graphical estimation of sky view-factors in urban environments. Journal of Climatology, 7(2), 193–197.

    Article  Google Scholar 

  51. Yamashita, S., Sekine, K., Shoda, M., Yamashita, K., & Hara, Y. (1986). On relationships between heat island and sky view factor in the cities of tama river basin, Japan. Atmospheric Environment (1967), 20(4), 681–686.

    Article  Google Scholar 

  52. Yang, K. (2014). Wireless sensor networks. Principles, Design and Applications.

  53. Younis, M., Bangad, M., & Akkaya, K. (2003). Base-station repositioning for optimized performance of sensor networks. In 2003 IEEE 58th vehicular technology conference, VTC 2003-Fall (Vol. 5, pp. 2956–2960). IEEE.

  54. Zhang, Z., Gao, C., Yuxiao, L., Liu, Y., & Liang, M. (2016). Multi-objective ant colony optimization based on the physarum-inspired mathematical model for bi-objective traveling salesman problems. PloS One, 11(1), e0146709.

    Article  Google Scholar 

Download references

Acknowledgements

The Authors would like to thank Pini Deri for helping with the technical aspects of starting this research. The authors would like to thank Liat Rapaport and Meitar Kela for helping with the field experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boaz Ben-Moshe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ben-Moshe, B., Shvalb, N., Gozlan, K. et al. Long-range and energy-efficient optical networking for tiny sensors. Wireless Netw 25, 2375–2392 (2019). https://doi.org/10.1007/s11276-018-1668-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-018-1668-5

Keywords

Navigation