Skip to main content

Advertisement

Log in

LiMCA: an optimal clustering algorithm for lifetime maximization of internet of things

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

The idea of Internet of Things (IoT) is that many of the live objects (e.g., appliances) in the network are accessible, sensed, and interconnected. However, energy-constrained IoT nodes limit the performance of the IoT network. Hence, preserving energy in IoT network requires utmost attention. Unequal clustering is commonly considered as one of the efficient energy saving technique. Here, the traffic load is evenly distributed among the nodes using variable size clusters across the network. However, none of the existing solutions considered (1) realistic factors like fading model, routing protocol etc., or (2) optimization of cluster radius while devising clustering structure. The contribution of this paper is two-fold. First, we analyze the maximization of network lifetime by balancing the energy consumption among Cluster Heads (CHs). We found that cluster radius of each level has significant role in maximization of network lifetime. Second, to meet the requirement of maximization of network lifetime, this paper proposes a novel Lifetime Maximizing optimal Clustering Algorithm (LiMCA) for battery-powered IoT devices. Particularly, LiMCA includes a novel stochastic deployment scheme for Member Nodes (MNs) and CHs and a training protocol to train CHs and MNs about their coarse-grain location. Extensive simulation study shows that our algorithm improves the network lifetime by more than 30%, compared to other existing approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Atzori, L., Iera, A., & Morabito, G. (2017). Understanding the internet of things: Definition, potentials, and societal role of a fast evolving paradigm. Ad Hoc Networks, 56, 122–140.

    Article  Google Scholar 

  2. Fuqaha, A. A., Guizani, M., Mohammadi, M., Aledhari, M., & Ayyash, M. (2015). Internet of things: A survey on enabling technologies, protocols, and applications. IEEE Communications Surveys and Tutorials, 17(4), 2347–2376.

    Article  Google Scholar 

  3. Xu, L., Collier, R., & O’Hare, G. M. P. (2017). A survey of clustering techniques in WSN and consideration of the challenges of applying such to 5G IoT scenarios. IEEE Internet of Things Journal, 4(5), 1229–1249.

    Article  Google Scholar 

  4. Anastasi, G., Conti, M., Francesco, M., & Passarella, A. (2009). Energy conservation in wireless sensor networks: A survey. Ad Hoc Networks, 7(3), 537–568.

    Article  Google Scholar 

  5. Li, Q. Q., Gochhayat, S. P., Conti, M., & Liu, F. A. (2017). EnergIoT: A solution to improve network lifetime of IoT devices. Pervasive and Mobile Computing, 42, 124–133.

    Article  Google Scholar 

  6. Younis, O., Krunz, M., & Ramasubramanian, S. (2006). Node clustering in wireless sensor networks: Recent developments and deployment challenges. IEEE Network, 20(3), 20–25.

    Article  Google Scholar 

  7. Afsar, M. M., & Tayarani-N, M. H. (2014). Clustering in sensor networks: A literature survey. Journal of Network and Computer Applications, 46, 198–226.

    Article  Google Scholar 

  8. Younis, O., & Fahmy, S. (2004). HEED: A hybrid, energy-efficient, distributed clustering approach for ad hoc sensor networks. IEEE Transactions on Mobile Computing, 3(4), 366–379.

    Article  Google Scholar 

  9. Lin, H., & Uster, H. (2014). Exact and heuristic algorithms for data-gathering cluster-based wireless sensor network design problem. IEEE/ACM Transactions on Networking, 22(3), 903–916.

    Article  Google Scholar 

  10. Moon, S. H., Park, S., & Han, S. J. (2017). Energy efficient data collection in sink-centric wireless sensor networks: A cluster-ring approach. Computer Communications, 101, 12–25.

    Article  Google Scholar 

  11. Wei, D., Jin, Y., Vural, S., Moessner, K., & Tafazolli, R. (2011). An energy-efficient clustering solution for wireless sensor networks. IEEE Transactions on Wireless Communications, 10(11), 3973–3983.

    Article  Google Scholar 

  12. Li, H., Liu, Y., Chen, W., Jia, W., Li, B., & Xiong, J. (2013). COCA: Constructing optimal clustering architecture to maximize sensor network lifetime. Computer Communications, 36(3), 256–268.

    Article  Google Scholar 

  13. Shu, T., & Krunz, M. (2010). Coverage-time optimization for clustered wireless sensor networks: A power-balancing approach. IEEE/ACM Transactions on Networking, 18(1), 202–215.

    Article  Google Scholar 

  14. Sanchez, A. J. G., Sanchez, F. G., & Haro, J. G. (2011). Wireless sensor network deployment for integrating video-surveillance and data-monitoring in precision agriculture over distributed crops. Computers and Electronics in Agriculture, 75(2), 288–303.

    Article  Google Scholar 

  15. Conti, M. (2015). Secure wireless sensor networks: Threats and solutions. Berlin: Springer.

    Book  Google Scholar 

  16. Halder, S., & Ghosal, A. (2015). Lifetime optimizing clustering structure using archimedes spiral based deployment in WSNs. In Proceedings of 14th IFIP/IEEE symposium on integrated network and service management (IM) (pp. 592–598).

  17. Baranidharan, B., & Santhi, B. (2016). DUCF: Distributed load balancing unequal clustering in wireless sensor networks using fuzzy approach. Applied Soft Computing, 40, 495–506.

    Article  Google Scholar 

  18. Halder, S., & Ghosal A. (2015). A predetermined deployment technique for lifetime optimization in clustered wsns. In Proceedings of international conference on algorithms and architectures for parallel processing (ICA3PP), LNCS 9531 (pp. 682–696).

  19. Darabkh, K. A., Ismail, S. S., Shurman, M. A., Jafar, I. F., Alkhader, E., & Mistarihi, M. F. A. (2012). Performance evaluation of selective and adaptive heads clustering algorithms over wireless sensor networks. Journal of Network and Computer Applications, 35(6), 2068–2080.

    Article  Google Scholar 

  20. Xu, L., O’Hare, G. M. P., & Collier, R. (2017). A smart and balanced energy-efficient multihop clustering algorithm (smart-beem) for MIMO IoT systems in future networks. Sensors, 17(7), article no. 1574.

  21. Lin, H., Wang, L., & Kong, R. (2015). Energy efficient clustering protocol for large-scale sensor networks. IEEE Sensors Journal, 15(12), 7150–7160.

    Article  Google Scholar 

  22. Chen, D. R. (2015). A link-and hop-constrained clustering for multi-hop wireless sensor networks. Computer Communications, 72, 78–92.

    Article  Google Scholar 

  23. Ghosal, A., & Halder, S. (2017). Lifetime optimizing clustering structure using archimedes’ spiral based deployment in WSNs. IEEE Systems Journal, 11(2), 1039–1048.

    Article  Google Scholar 

  24. Kong, L., Xiang, Q., Liu, X., Liu, X. Y., Gao, X., Chen, G., et al. (2016). ICP: Instantaneous clustering protocol for wireless sensor networks. Computer Networks, 101, 144–157.

    Article  Google Scholar 

  25. Ye, M., Li, C., Chen, G., & Wu, J. (2005). EECS: An energy efficient clustering scheme in wireless sensor networks. In Proceedings of 24th IEEE international performance, computing, and communications conference (IPCCC) (pp. 535–540).

  26. Ye, M., Li, C., Chen, G., & Wu, J. (2007). An energy efficient clustering scheme in wireless sensor networks. Ad Hoc and Sensor Wireless Networks, 3(2–3), 99–119.

    Google Scholar 

  27. Lai, W. K., Fan, C. S., & Lin, L. Y. (2012). Arranging cluster sizes and transmission ranges for wireless sensor networks. Information Sciences, 183(1), 117–131.

    Article  Google Scholar 

  28. Taheri, H., Neamatollahi, P., Younis, O. M., Naghibzadeh, S., & Yaghmaee, M. H. (2012). An energy-aware distributed clustering protocol in wireless sensor networks using fuzzy logic. Ad Hoc Networks, 10(7), 1469–1481.

    Article  Google Scholar 

  29. Chang, X., Tan, R., Xing, G., Yuan, Z., Lu, C., Chen, Y., et al. (2011). Sensor placement algorithms for fusion-based surveillance networks. IEEE Transaction on Parallel and Distributed Systems, 22(8), 1407–1414.

    Article  Google Scholar 

  30. Bagci, H., Korpeoglu, I., & Yazıcı, A. (2015). A distributed fault-tolerant topology control algorithm for heterogeneous wireless sensor networks. IEEE Transactions on Parallel and Distributed Systems, 26(4), 914–923.

    Article  Google Scholar 

  31. Zhang, H., & Shen, H. (2009). Balancing energy consumption to maximize network lifetime in data-gathering sensor networks. IEEE Transactions on Parallel and Distributed Systems, 20(10), 1526–1539.

    Article  Google Scholar 

  32. Cotuk, H., Bicakci, K., Tavli, B., & Uzun, E. (2014). The impact of transmission power control strategies on lifetime of wireless sensor networks. IEEE Transactions on Computers, 63(11), 2866–2879.

    Article  MathSciNet  Google Scholar 

  33. Zuniga, M., & Krishnamachari, B. (2004). Analyzing the transitional region in low power wireless links. In Proceedings 1st annual IEEE communications society conference on sensor and ad hoc communications and networks (SECON) (pp. 517–526).

  34. Li, B., Li, H., Wang, W., Yin, Q., & Liu, H. (2013). Performance analysis and optimization for energy-efficient cooperative transmission in random wireless sensor network. IEEE Transactions on Wireless Communications, 12(9), 4647–4657.

    Article  Google Scholar 

  35. Luenberger, D. G., & Ye, Y. (2008). Linear and nonlinear programming (3rd ed., Vol. 116). New York: Springer.

    Book  Google Scholar 

  36. Barsi, F., Bertossi, A. A., Lavault, C., Navarra, A., Olariu, S., Pinotti, M. C., et al. (2011). Efficient location training protocols for heterogeneous sensor and actor networks. IEEE Transactions on Mobile Computing, 10(3), 377–391.

    Article  Google Scholar 

  37. Retrieved from: http://lcav.epfl.ch/op/edit/sensorscope-en (2017).

  38. Li, X., Yan, S., Xu, C., Nayak, A., & Stojmenovic, I. (2011). Localized delay-bounded and energy-efficient data aggregation in wireless sensor and actor networks. Wireless Communications and Mobile Computing, 11(12), 1603–1617.

    Article  Google Scholar 

  39. Grant, M., & Boyd, S. (2006). CVX: Matlab software for disciplined convex programming, version 2.0 Beta [Online]. http://cvxr.com/cvx.

  40. Halder, S., & Ghosal, A. (2016). A location-wise predetermined deployment for optimizing lifetime in visual sensor networks. IEEE Transactions on Circuits and Systems for Video Technology, 26(6), 1131–1145.

    Article  Google Scholar 

  41. Ishak, R., Xu, Q., Olariu, S., & Salleh, S. (2007). Hybrid training with binary search protocol for wireless sensor networks. Mobile Information Systems, 3(3–4), 233–249.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subir Halder.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Halder, S., Ghosal, A. & Conti, M. LiMCA: an optimal clustering algorithm for lifetime maximization of internet of things. Wireless Netw 25, 4459–4477 (2019). https://doi.org/10.1007/s11276-018-1741-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-018-1741-0

Keywords

Navigation