Skip to main content

Advertisement

Log in

Characterization of sparse beamforming for energy efficiency in cloud radio access networks using Gauss–Poisson process

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

In this paper, we propose an energy efficient Sparse Beamforming Strategy (SBS) in Cloud Radio Access Networks (C-RAN) to achieve an optimimum energy efficiency. The stochastic geometry method is used to derive some expressions for ergodic rate and coverage probability in downlink transmission. In this system model, Remote Radio Heads (RRHs) are coordinated by a Baseband Unit to transmit data toward users. We assume using RRH clusters where each cluster includes one or two RRHs. To investigate this system, we have used Gauss–Poisson process (GPP). The GPP well describes this clustering scenarios. Considering the intra-cell interference power control, we propose SBS to gain the best performance subject to the energy efficiency (EE) metric. SBS which is based on sparse selections of RRHs, is characterized by introducing analytical expressions and simulation of a C-RAN scenario which the allocation of the RRHs follows the GPP distribution. The numerical results demonstrate that the proposed SBS method improves the overall EE of C-RAN scenario up to 15% with respect to full RRHs coordination, at the high intra-cell interference conditions, and about 30% with respect to no coordination state between RRHs in low intra-cell interference regime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Cheng, M., Wang, J. B., Wu, Y., & Lin, M. (2017). Downlink ergodic rate analysis for virtual cell based cloud radio access networks. IEEE Access Journal, 5, 13520–13531.

    Article  Google Scholar 

  2. Wu, J., Zhang, Zh, Hong, Y., et al. (2015). Cloud radio access network (C-RAN): A primer. IEEE Network, 29, 35–41.

    Article  Google Scholar 

  3. Douik, A., Dahrouj, H., Al-Naffouri, T., et al. (2016). Coordinated scheduling and power control in cloud-radio access networks. IEEE Transactions on Wireless Communications, 15, 2523–2536.

    Article  Google Scholar 

  4. Fakhri, Z. H., Khan, M., & Sabir, F., et al. (2017). A resource allocation mechanism for cloud radio access network based on cell differentiation and integration concept. IEEE Transactions on Network Science and Engineering. https://doi.org/10.1109/TNSE.2017.2754101.

    Article  Google Scholar 

  5. Li, Y., Celebi, H., & Daneshmand, M. (2013). Energy efficient femtocell networks: Challenges and opportunities. IEEE Wireless Communications, 20(6), 99–105.

    Article  Google Scholar 

  6. Chih-lin, I., Yuan, Y., Huang, J., et al. (2015). Rethink fronthaul for soft RAN. IEEE Communications Magazine, 53(9), 82–88.

    Article  Google Scholar 

  7. Marsch, P., & Fettweis, G. P. (2011). Coordinated multi-point in mobile communications: From theory to practice. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  8. Tolli, A., Pennanen, H., & Komulainen, P. (2011). Decentralized minimum power multi-cell beam-forming with limited backhaul signaling. IEEE Transactions on Wireless Communications, 10, 570–580.

    Article  Google Scholar 

  9. Li, Y., Liao, C., Wang, Y., & Wang, Ch. (2015). Energy-efficient optimal relay selection in cooperative cellular networks based on double auction. IEEE Transactions on Wireless Communications, 14(8), 4093–4104.

    Article  Google Scholar 

  10. Farahmand, M., & Mohammadi, A. (2017). Sparse power allocation in downlink transmission of cloud radio access networks. IET Communications, 11(16), 2531–2538.

    Article  Google Scholar 

  11. Dai, B., & Yu, W. (2014). Sparse beamforming and user-centric clustering for downlink cloud radio access network. IEEE Access, 2, 1326–1339.

    Article  Google Scholar 

  12. Li, Y., Zhu, X., Liao, Ch., et al. (2015). Energy efficiency maximization by jointly optimizing the positions and serving range of relay stations in cellular networks. IEEE Transactions on Vehicular Technology, 64(6), 2551–2560.

    Article  Google Scholar 

  13. Li, J., Wu, J., Peng, M., et al. (2016). Queue-aware energy-efficient joint remote radio head activation and beamforming in cloud radio access networks. IEEE Transactions on Wireless Communications, 15(6), 3380–3894.

    Article  Google Scholar 

  14. Shi, Y., Zhang, J., & Letaief, Kh B. (2014). Robust group sparse beamforming for multicast green cloud-RAN with imperfect CSI. IEEE Transactions on Wireless Communications, 13(5), 2809–2823.

    Article  Google Scholar 

  15. Hu, B., Hua, C., Zhang, J., et al. (2017). Joint fronthaul multicast beamforming and user-centric clustering in downlink C-RANs. IEEE Transactions on Wireless Communications, 16(8), 5395–5409.

    Article  Google Scholar 

  16. Teng, Y., & Zhao, W. (2017). Robust group sparse beamforming for dense C-RANs with probabilistic SINR constraints. In Wireless communications and networking conference (WCNC), 2017. IEEE, San Francisco, USA, March 2017. https://doi.org/10.1109/WCNC.2017.7925637

  17. Nigam, G., Minero, P., & Haenggi, M. (2014). Coordinated multipoint joint transmission in heterogeneous networks. IEEE Transactions on Communications, 62, 4134–4146.

    Article  Google Scholar 

  18. Wang, H. M., & Zheng, T. X. (2016). Physical layer security in random cellular networks. Berlin: Springer.

    Book  Google Scholar 

  19. Guo, A., Zhong, Y., Zhang, W., et al. (2016). The Gauss–Poisson process for wireless networks and the benefits of cooperation. IEEE Transactions on Communications, 64, 1916–1929.

    Article  Google Scholar 

  20. Tanbourgi, R., Singh, S., Andrews, J., et al. (2014). A tractable model for non-coherent joint-transmission base station cooperation. IEEE Transactions on Wireless Communications, 13, 4959–4973.

    Article  Google Scholar 

  21. Andrews, J. G., Baccelli, F., & Ganti, R. K. (2011). A tractable approach to coverage and rate in cellular networks. IEEE Transactions on Communications, 59, 3122–3134.

    Article  Google Scholar 

  22. Ding, Z., & Poor, H. V. (2013). The use of spatially random base stations in cloud radio access networks. IEEE Signal Processing Letters, 20(11), 1138–1141.

    Article  Google Scholar 

  23. Peng, M., Yan, Sh, & Poor, H. V. (2014). Ergodic capacity analysis of remote radio head associations in cloud radio access networks. IEEE Wireless Communications Letters, 3(4), 365–368.

    Article  Google Scholar 

  24. Wang, H. M., & Zheng, T. X. (2016). Physical layer security in random cellular networks. SpringerBriefs in Computer Science. Springer.

  25. Newman, D. S. (1970). A new family of point processes which are characterized by their second moment properties. Journal of Applied Probability, 7, 338–358.

    Article  MathSciNet  Google Scholar 

  26. Haenggi, M. (2012). Stochastic geometry for wireless networks. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  27. Bartelt, J., Rost, P., Wubben, D., et al. (2015). Fronthaul and backhaul requirements of flexibly centralized radio access networks. IEEE Wireless Communications, 22, 105–111.

    Article  Google Scholar 

  28. Hajisami, A., & Pompili, D. (2015). Cloud-CFFR: Coordinated fractional frequency reuse in cloud radio access network (C-RAN). In 2015 IEEE 12th international conference on mobile ad hoc and sensor systems (pp. 46–54).

  29. Björnson, E., Sanguinetti, L., Hoydis, J., et al. (2015). Optimal design of energy-efficient multi-user MIMO systems: Is massive MIMO the answer? IEEE Transactions on Wireless Communications, 14, 3059–3075.

    Article  Google Scholar 

  30. Sabella, D., De Domenico, A., Katranaras, E., et al. (2014). Energy efficiency benefits of RAN-as-a-service concept for a cloud-based 5G mobile network infrastructure. IEEE Access, 2, 1586–1597.

    Article  Google Scholar 

  31. Peng, M., Yu, Y., Xiang, H., & Poor, H. V. (2015). Energy-efficient resource allocation optimization for multimedia heterogeneous cloud radio access networks. IEEE Transactions on Vehicular Technology, 64, 5275–5278.

    Article  Google Scholar 

  32. Qin, C., Ni, W., Tian, H., & Liu, R. P. (2017). Fronthaul load balancing in energy harvesting powered cloud radio access networks. IEEE Access, 5, 7762–7775.

    Article  Google Scholar 

  33. Amjad, M., Akhtar, F., Rehmani, M. H., et al. (2017). Full-duplex communication in cognitive radio networks: A survey. IEEE Communiications Surveys and Tutorials, 19(4), 2158–2191.

    Article  Google Scholar 

  34. Li, Y., Liu., J., Cao, B., & Wang, C. (2018). Joint optimization of radio and virtual machine resources with uncertain user demands in mobile cloud computing. IEEE Transactions on Multimedia. https://doi.org/10.1109/TMM.2018.2796246.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majid Farahmand.

Appendix: A detailed proof of (12) and (13)

Appendix: A detailed proof of (12) and (13)

The left side of (12) is expanded to

$$\begin{aligned} {\mathbb {E}}\left[ {{\rm Pr}} \left( \ln (1+{{\rm SIR}})> \tau \right) \right] {\mathop{\approx }\limits^{(a)}}\, {\mathbb{E}}\left[ {{\rm Pr}} \left( {{\rm ln}} ({{\rm SIR}})> \tau \right) \right] = \int _{\tau>0}\underbrace{ {{\rm Pr}}\left[ {{\rm ln(SIR)}} > \tau \right] }_T {{\rm d}}\tau, \end{aligned}$$
(26)

where (a) is from considering high SIR in the C-RAN, and T is expressed as

$$\begin{aligned} T = \int _{\tau>0} {\text {Pr}}\left[ \frac{P_1h_0b^{-\alpha }}{\underbrace{\sum \limits _{i\in {\varPhi }} P_i h_x \Vert x \Vert ^{-\alpha }}_I} \right] {\text {d}}\tau {\mathop {=}\limits ^{(b)}} \int _{\tau >0} {\mathcal {L}}_I \underbrace{\left( \frac{{\text {e}}^\tau b^\alpha }{P_1} \right) }_s, \end{aligned}$$
(27)

where (b) results from exponential distribution of h, i.e. \(h \sim \exp (1)\). (27) can be continued as

$$\begin{aligned} \begin{aligned} {\mathcal {L}}_I \left( s \right)&= {\mathbb {E}}_{\phi ,\{h\}} \left[ {\text {exp}} \left( -\sum (P_i s h_x \Vert x \Vert ^{-\alpha }\right) \right] {\mathop {=}\limits ^{(c)}} {\mathbb {E}} \left[ \prod _{x\in {\varPhi }}{\mathbb {E}}_h ({\text {exp}} (-P s h \Vert x \Vert ^{-\alpha }) \right] \\&{\mathop {=}\limits ^{(d)}} {\text {exp}} \left( \lambda _p \int _{{\mathbb {R}}^2} \right. \left. \left[ (1-p) W_1(x) + pW_2(x) \int _{{\mathbb {R}}^2} W_2(x+z) f_u(\Vert z \Vert ) {\text {d}} z-1 \right] {\text {d}}x \right) , \end{aligned} \end{aligned}$$
(28)

where (c) is because of i.i.d distribution of h and its independency from \({\varPhi }\). (d) is PGFL of \({\varPhi }\) [24]. Moreover, \(W_1(x)\) and \(W_2(x)\) can be described as

$$\begin{aligned} \begin{aligned} W_1(x) = {\mathbb {E}}_h \left( {\text {exp}} \left( -P_1 s h \Vert x \Vert ^{-\alpha }\right) \right) = \frac{1}{1+P_1 s \Vert x \Vert ^ {-\alpha }}, \\ \end{aligned} \end{aligned}$$
(29)

after some manipulation, \(W_1(x)\) and \(W_2(x)\) can be calculated as follow

$$\begin{aligned} \begin{aligned} W_1(x) = \frac{1}{1+{\text {e}}^\tau b^\alpha \Vert x \Vert ^ {-\alpha }}, \; W_2(x) = \frac{1}{1+K {\text {e}}^\tau b^\alpha \Vert x \Vert ^ {-\alpha }}. \end{aligned} \end{aligned}$$
(30)

where \(K=P_2/P_1\). Therefore, the proof is completed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farahmand, M., Mohammadi, A. Characterization of sparse beamforming for energy efficiency in cloud radio access networks using Gauss–Poisson process. Wireless Netw 25, 4555–4567 (2019). https://doi.org/10.1007/s11276-018-1752-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-018-1752-x

Keywords

Navigation