Skip to main content

Advertisement

Log in

Coverage and connectivity aware energy efficient scheduling in target based wireless sensor networks: an improved genetic algorithm based approach

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Energy efficient scheduling of sensor nodes is one of the most efficient techniques to extend the lifetime of the wireless sensor networks (WSNs). Instead of activating all the deployed sensor nodes, a set of sensor nodes are activated or scheduled to monitor the targeted region. While scheduling with lesser number of sensor nodes, coverage and connectivity of the network should be taken care due to the limited sensing and communication range of the sensor nodes. In this paper, we have proposed an improved genetic algorithm (GA) based scheduling for WSNs. An efficient chromosome representation is given and it is shown to generate valid chromosome after crossover and mutation operation. The fitness function is derived with four conflicting objectives, selection of minimum number of sensor nodes, full coverage, connectivity and energy level of the selected sensor nodes. We have introduced a novel mutation operation for better performance and faster convergence of the proposed GA based approaches. We have also formulated the scheduling problem as a Linear Programming. Extensive simulation is performed on various network scenarios by varying number of deployed sensor nodes, target point and network length. We also perform a popular statistical test, analysis of variance followed by post hoc analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Yick, J., Mukherjee, B., & Ghosal, D. (2008). Wireless sensor network survey. Computer Networks, 52(12), 2292–2330.

    Article  Google Scholar 

  2. Rault, T., Bouabdallah, A., & Challal, Y. (2014). Energy efficiency in wireless sensor networks: A top-down survey. Computer Networks, 67, 104–122.

    Article  Google Scholar 

  3. Yigitel, M. A., Incel, O. D., & Ersoy, C. (2011). QoS-aware MAC protocols for wireless sensor networks: A survey. Computer Networks, 55(8), 1982–2004.

    Article  Google Scholar 

  4. Kuila, P., & Jana, P. K. (2015). Heap and parameter-based load balanced clustering algorithms for wireless sensor networks. International Journal of Communication Networks and Distributed Systems, 14(4), 413–432.

    Article  Google Scholar 

  5. Kuila, P., & Jana, P. K. (2014). A novel differential evolution based clustering algorithm for wireless sensor networks. Applied Soft Computing, 25, 414–425.

    Article  Google Scholar 

  6. Cardei, I., & Cardei, M. (2008). Energy-efficient connected-coverage in wireless sensor networks. International Journal of Sensor Networks, 3(3), 201–210.

    Article  MATH  Google Scholar 

  7. Kuila, P., & Jana, P. K. (2014). Energy efficient clustering and routing algorithms for wireless sensor networks: Particle swarm optimization approach. Engineering Applications of Artificial Intelligence, 33, 127–140.

    Article  Google Scholar 

  8. Zungeru, A. M., Ang, L.-M., & Seng, K. P. (2012). Classical and swarm intelligence based routing protocols for wireless sensor networks: A survey and comparison. Journal of Network and Computer Applications, 35(5), 1508–1536.

    Article  Google Scholar 

  9. Kuila, P., Gupta, S. K., & Jana, P. K. (2013). A novel evolutionary approach for load balanced clustering problem for wireless sensor networks. Swarm and Evolutionary Computation, 12, 48–56.

    Article  Google Scholar 

  10. Kuila, P., & Jana, P. K. (2016). Evolutionary computing approaches for clustering and routing in wireless sensor networks. In J. K. Mandal, S. Mukhopadhyay, & T. Pal (Eds.), Handbook of research on natural computing for optimization problems (pp. 246–266). Hershey: IGI Global.

    Chapter  Google Scholar 

  11. Musilek, P., Krömer, P., & Bartoň, T. (2015). Review of nature-inspired methods for wake-up scheduling in wireless sensor networks. Swarm and Evolutionary Computation, 25, 100–118.

    Article  Google Scholar 

  12. Renold, A. P., & Chandrakala, S. (2016). Survey on state scheduling-based topology control in unattended wireless sensor networks. Computers & Electrical Engineering, 56, 334–349.

    Article  Google Scholar 

  13. Zhu, C., Zheng, C., Shu, L., & Han, G. (2012). A survey on coverage and connectivity issues in wireless sensor networks. Journal of Network and Computer Applications, 35(2), 619–632.

    Article  Google Scholar 

  14. Yu, J., Wang, N., Wang, G., & Yu, D. (2013). Connected dominating sets in wireless ad hoc and sensor networks—A comprehensive survey. Computer Communications, 36(2), 121–134.

    Article  Google Scholar 

  15. Rebai, M., Le berre, M., Snoussi, H., Hnaien, F., & Khoukhi, L. (2015). Sensor deployment optimization methods to achieve both coverage and connectivity in wireless sensor networks. Computers & Operations Research, 59, 11–21.

    Article  MathSciNet  MATH  Google Scholar 

  16. Gupta, S. K., Kuila, P., & Jana, P. K. (2015). Genetic algorithm for \( k \)-connected relay node placement in wireless sensor networks. In Proceedings of the second international conference on computer and communication technologies (pp. 721–729). Springer.

  17. Gupta, S. K., Kuila, P., & Jana, P. K. (2016). Genetic algorithm approach for \( k \)-coverage and \( m \)-connected node placement in target based wireless sensor networks. Computers & Electrical Engineering, 56, 544–556.

    Article  Google Scholar 

  18. Liu, X., & He, D. (2014). Ant colony optimization with greedy migration mechanism for node deployment in wireless sensor networks. Journal of Network and Computer Applications, 39, 310–318.

    Article  Google Scholar 

  19. Moro, G., & Monti, G. (2012). W-Grid: A scalable and efficient self-organizing infrastructure for multi-dimensional data management, querying and routing in wireless data-centric sensor networks. Journal of Network and Computer Applications, 35(4), 1218–1234.

    Article  Google Scholar 

  20. Al-Turjman, F. M., Hassanein, H. S., & Ibnkahla, M. (2013). Quantifying connectivity in wireless sensor networks with grid-based deployments. Journal of Network and Computer Applications, 36(1), 368–377.

    Article  Google Scholar 

  21. Yang, C., & Chin, K.-W. (2017). On nodes placement in energy harvesting wireless sensor networks for coverage and connectivity. IEEE Transactions on Industrial Informatics, 13(1), 27–36.

    Article  Google Scholar 

  22. Yang, C., & Chin, K.-W. (2014). Novel algorithms for complete targets coverage in energy harvesting wireless sensor networks. IEEE Communications Letters, 18(1), 118–121.

    Article  MathSciNet  Google Scholar 

  23. Deif, D., & Gadallah, Y. (2017). An ant colony optimization approach for the deployment of reliable wireless sensor networks. IEEE Access, 5, 10744–10756.

    Article  Google Scholar 

  24. Wang, Y., Wu, S., Chen, Z., Gao, X., & Chen, G. (2017). Coverage problem with uncertain properties in wireless sensor networks: A survey. Computer Networks, 123, 200–232.

    Article  Google Scholar 

  25. Han, G., Liu, L., Jiang, J., Shu, L., & Hancke, G. (2017). Analysis of energy-efficient connected target coverage algorithms for industrial wireless sensor networks. IEEE Transactions on Industrial Informatics, 13(1), 135–143.

    Article  Google Scholar 

  26. Jia, J., Chen, J., Chang, G., & Tan, Z. (2009). Energy efficient coverage control in wireless sensor networks based on multi-objective genetic algorithm. Computers & Mathematics with Applications, 57(11), 1756–1766.

    Article  MathSciNet  MATH  Google Scholar 

  27. Zhang, H., & Hou, J. C. (2005). Maintaining sensing coverage and connectivity in large sensor networks. Ad Hoc & Sensor Wireless Networks, 1(1–2), 89–124.

    Google Scholar 

  28. Lee, J.-W., Choi, B.-S., & Lee, J.-J. (2011). Energy-efficient coverage of wireless sensor networks using ant colony optimization with three types of pheromones. IEEE Transactions on Industrial Informatics, 7(3), 419–427.

    Article  Google Scholar 

  29. Dong, Y., Xu, J., & Zhang, X. (2013). Energy-efficient target coverage algorithm for wireless sensor networks. In IEEE 10th international conference on mobile ad-hoc and sensor systems (MASS), 2013 (pp. 415–416). IEEE.

  30. Sakai, K., Sun, M., Ku, W., Lai, T., & Vasilakos, A. (2015). A framework for the optimal \( k \)-coverage deployment patterns of wireless sensors. IEEE Sensors, 15, 7273–7283.

    Article  Google Scholar 

  31. Carrabs, F., Cerulli, R., DAmbrosio, C., & Raiconi, A. (2017). Exact and heuristic approaches for the maximum lifetime problem in sensor networks with coverage and connectivity constraints. RAIRO-Operations Research, 51(3), 607–625.

    Article  MathSciNet  MATH  Google Scholar 

  32. Lersteau, C., Rossi, A., & Sevaux, M. (2018). Minimum energy target tracking with coverage guarantee in wireless sensor networks. European Journal of Operational Research, 265(3), 882–894.

    Article  MathSciNet  MATH  Google Scholar 

  33. Heinzelman, W. B., Chandrakasan, A. P., & Balakrishnan, H. (2002). An application-specific protocol architecture for wireless microsensor networks. IEEE Transactions on Wireless Communications, 1(4), 660–670.

    Article  Google Scholar 

  34. Gupta, S. K., Kuila, P., & Jana, P. K. (2016). Energy efficient multipath routing for wireless sensor networks: A genetic algorithm approach. In International conference on advances in computing, communications and informatics (ICACCI), 2016 (pp. 1735–1740). IEEE.

  35. Kruppa, J., Lepenies, B., & Jung, K. (2018). A genetic algorithm for simulating correlated binary data from biomedical research. Computers in Biology and Medicine, 92, 1–8.

    Article  Google Scholar 

  36. Chen, W.-H., Wu, P.-H., & Lin, Y.-L. (2018). Performance optimization of thermoelectric generators designed by multi-objective genetic algorithm. Applied Energy, 209, 211–223.

    Article  Google Scholar 

  37. Gong, X., Plets, D., Tanghe, E., De Pessemier, T., Martens, L., & Joseph, W. (2018). An efficient genetic algorithm for large-scale planning of dense and robust industrial wireless networks. Expert Systems with Applications, 96, 311–329.

    Article  Google Scholar 

  38. Konak, A., Coit, D. W., & Smith, A. E. (2006). Multi-objective optimization using genetic algorithms: A tutorial. Reliability Engineering & System Safety, 91(9), 992–1007.

    Article  Google Scholar 

  39. Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2), 182–197.

    Article  Google Scholar 

  40. Goldberg, D. E. (2006). Genetic algorithms. Bengaluru: Pearson Education India.

    Google Scholar 

  41. Azharuddin, M., Kuila, P., & Jana, P. K. (2015). Energy efficient fault tolerant clustering and routing algorithms for wireless sensor networks. Computers & Electrical Engineering, 41, 177–190.

    Article  Google Scholar 

  42. Singh, D., Kuila, P., & Jana, P. K. (2014). A distributed energy efficient and energy balanced routing algorithm for wireless sensor networks. In 3rd International conference on advances in computing, communications and informatics (ICACCI-2014) (pp. 1657–1663). IEEE .

  43. Shapiro, S. S., & Wilk, M. B. (1965). An analysis of variance test for normality (complete samples). Biometrika, 52(3/4), 591–611.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pratyay Kuila.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harizan, S., Kuila, P. Coverage and connectivity aware energy efficient scheduling in target based wireless sensor networks: an improved genetic algorithm based approach. Wireless Netw 25, 1995–2011 (2019). https://doi.org/10.1007/s11276-018-1792-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-018-1792-2

Keywords

Navigation