Abstract
In this paper, we present an analytical framework for the performance evaluation of Radio Resource Allocation (RRA) in Orthogonal Frequency Division Multiple Access (OFDMA) networks. We focus on Quality of Service (QoS) guaranteed traffic whose capacity, in terms of the number of active user connections, depends on the users’ QoS requirements and channel conditions, and the RRA algorithm. The required QoS is guaranteed by restricting the number of admitted calls, which in turn requires an accurate estimate of the QoS metrics and capacity supported by the RRA when a new call arrives. These estimates for OFDMA networks are variable and usually obtained through time-consuming offline computer simulations. Mathematical frameworks on the other hand yield timely and accurate results. However, earlier known works on analytical modelling of RRA either consider a single channel with random traffic arrivals or multiple channels with full buffer data traffic. In contrast, we develop a queueing theoretic framework considering randomly arriving QoS-guaranteed traffic in a variable-rate multi-channel multi-class OFDMA network. The framework can be used online leading to better dynamic Call Admission Control. We characterize the RRA algorithm using a scheduler control parameter which can regulate the call blocking probability while providing predefined QoS constraints. We model the RRA as a variable service rate, multi-server, multi-class, finite buffer queueing system and verify the derived QoS metrics using extensive Monte-Carlo discrete event simulations.









Similar content being viewed by others
Abbreviations
- N :
-
Total number of users in the system
- \({\mathrm {N}}_{{\mathrm {PRB}}}\) :
-
Total number of PRBs available
- \({{\overrightarrow{{\varvec{\xi }}}}}\) :
-
Scheduler control parameter vector
- \(\zeta _k\) :
-
Traffic density of class-\({ k }\)
- \(\lambda _{p_k}\) :
-
Average class-\({ k }\) packet arrival rate
- \(\lambda _{c}\) :
-
Average call arrival rate
- \(\mu _c\) :
-
Call holding time
- \(\tau\) :
-
Duration of a TTI
- \({\mathbb {U}}_{k}\) :
-
Tagged user of class-\({ k }\)
- \({\mathrm {N}}_{{\mathrm {k}}}\) :
-
Number of users in class-\({ k }\)
- \(\gamma ^u\)/\(\overline{\gamma ^u}\) :
-
Instantaneous/average SNR of any user ‘\({u}\)’
- \(\gamma _{k}\)/ \(\overline{\gamma _{k}}\) :
-
Instantaneous/average SNR of class-\({ k }\)
- \({\gamma ^u_{k}}\)/\(\overline{\gamma ^u_{k}}\) :
-
Instantaneous/average SNR of user ‘\({u}\)’ of class-\({ k }\)
- \(A_{{k},{n}}\) :
-
Number of class-\({ k }\) packet arrivals in TTI n
- ‘\({{{\mathcal {B}}}_{k}}\)’:
-
Buffer of class-\({ k }\)
- \(b_{{k},{n-1}}\) :
-
Length of buffer ‘\({{{\mathcal {B}}}_{k}}\)’ at the beginning of TTI n
- \(C_{k,n}\) :
-
Server state or AMC mode of \({\mathbb {U}}_{k}\) in TTI n
- \(sc_n\) :
-
Prioritized class in TTI n
- \(R_{\omega }\) :
-
Number of PRBs required with AMC mode \(\omega\)
- \(\delta _k\) :
-
Average packet delay of class-\({ k }\)
- \(P_{{D_{k}}}\) :
-
Packet drop probability of class-\({ k }\)
- \({\mathbb {T}}_{k}\)/\({\mathbb {T}}^u\) :
-
Throughput of class-\({ k }\)/user ‘\({u}\)’
- \({\gamma _{k}^{{\mathrm {th}}}}\) :
-
Average SNR thresholds for user classification
- \(\gamma ^b_\omega\) :
-
Boundary of SNR interval for AMC mode \(\omega\)
References
Sesia, S., Toufik, I., & Baker, M. (2009). LTE—The UMTS long term evolution: From theory to practice. London: Wiley.
Asadi, A., & Mancuso, V. (2013). A survey on opportunistic scheduling in wireless communications. IEEE Communications Surveys and Tutorials, 15(4), 1671–1688. Fourth Quarter.
Holma, H., & Toskala, A. (2009). LTE for UMTS-OFDMA and SC-FDMA based radio access. London: Wiley.
3GPP. (2008). Evolved universal terrestrial radio access (E-UTRA); physical layer procedures. TS 36.213.
Palit, B., & Das, S. S. (2015). Performance evaluation of mixed traffic schedulers in OFDMA networks. Wireless Personal Communications, 83(2), 895–924.
Ghosh, P., Das, S. S., & Chandhar, P. (2012, May). Estimation of effective radio resource usage for VoIP scheduling in OFDMA cellular networks. In Proceedings of IEEE vehicular technology conference, VTC-Spring (pp. 1–6).
Ahmed, M. H. (2005). Call admission control in wireless networks: A comprehensive survey. IEEE Communications Surveys and Tutorials, 7(1), 49–68. First Quarter.
Batabyal, S., & Das, S. S. (2014, May). Analysis of a call admission control algorithm for real-time traffic in OFDMA based cellular networks. In Proceedings of IEEE vehicular technology conference, VTC-Spring (pp. 1–5).
Chung, S. P., & Chen, Y. W. (2012). Performance analysis of call admission control in SFR-based LTE systems. IEEE Communications Letters, 16(7), 1014–1017.
Batabyal, S., & Das, S. S. (2013, February). Call admission control for real-time traffic in OFDMA based cellular networks. In Proceedings of national conference on communications, NCC (pp. 1–5).
Le, L. B., Hossain, E., Niyato, D., & Kim, D. I. (2013, June). Mobility-aware admission control with QoS guarantees in OFDMA femtocell networks. In Proceedings of the IEEE international conference on communications, ICC (pp. 2217–2222).
Batabyal, Subhendu, & Das, Suvra Sekhar. (2015). GoS evaluation for OFDMA cellular networks. Wireless Personal Communications, 83(2), 925–957.
Karray, M. K. (2010). Analytical evaluation of QoS in the downlink of OFDMA wireless cellular networks serving streaming and elastic traffic. IEEE Transactions on Wireless Communications, 9(5), 1799–1807.
Castellanos-Lopez, S. L., Cruz-Perez, F. A., Rivero-Angeles, M. E., & Hernandez-Valdez, G. (2014). Joint connection level and packet level analysis of cognitive radio networks with VoIP traffic. IEEE Journal on Selected Areas in Communications, 32(3), 601–614.
Fan, Y., Kuusela, M., Lunden, P., & Valkama, M. (2008, April). Downlink VoIP support for Evolved UTRA. In Proceedings of IEEE wireless communications and networking conference, WCNC (pp. 1933–1938).
Le, L. B., Hossain, E., & Alfa, T. S. (2006). Delay statistics and throughput performance for multi-rate wireless networks under multiuser diversity. IEEE Transactions on Wireless Communications, 5(11), 3234–3243.
Omahen, K. J. (1977). Capacity bounds for multiresource queues. Journal of the ACM, 24(4), 646–663.
Gross, D., Shortle, J. F., Thompson, J. M., & Harris, C. M. (2008). Fundamentals of queueing theory (4th ed.). New York, NY: Wiley-Interscience.
Liu, Q., Zhou, S., & Giannakis, G. B. (2005). Queuing with adaptive modulation and coding over wireless links: Cross-layer analysis and design. IEEE Transactions on Wireless Communications, 4(3), 1142–1153.
Wang, H. S., & Moayeri, N. (1995). Finite-state Markov channel-a useful model for radio communication channels. IEEE Transactions on Vehicular Technology, 44(1), 163–171.
Liu, Q., Zhou, S., & Giannakis, G. B. (2004). Cross-layer combining of adaptive modulation and coding with truncated ARQ over wireless links. IEEE Transactions on Wireless Communications, 3(5), 1746–1755.
Wang, X., Liu, Q., & Giannakis, G. B. (2007). Analyzing and optimizing adaptive modulation coding jointly with ARQ for QoS-guaranteed traffic. IEEE Transactions on Vehicular Technology, 56(2), 710–720.
Liu, Q., Zhou, S., & Giannakis, G. B. (2005). Cross-layer scheduling with prescribed QoS guarantees in adaptive wireless networks. IEEE Journal on Selected Areas in Communications, 23(5), 1056–1066.
Vo, N. S., Duong, T. Q., Zepernick, H. J., & Fiedler, M. (2015). A cross-layer optimized scheme and its application in mobile multimedia networks with QoS provision. IEEE Systems Journal, 99, 1–14.
Poggioni, P. B. M., & Rugini, L. (2010). QoS analysis of a scheduling policy for heterogeneous users employing AMC jointly with ARQ. IEEE Transactions on Communications, 58(9), 2639–2652.
Wang, J., Huang, A., Cai, L., & Wang, W. (2013). On the queue dynamics of multiuser multichannel cognitive radio networks. IEEE Transactions on Vehicular Technology, 62(3), 1314–1328.
Rashid, M. M., Hossain, M. J., Hossain, E., & Bhargava, V. K. (2009). Opportunistic spectrum scheduling for multiuser cognitive radio: A queueing analysis. IEEE Transactions on Wireless Communications, 8(10), 5259–5269.
Bonald, T., & Proutière, A. (2003). Wireless downlink data channels: User performance and cell dimensioning. In Proceedings of annual international conference on mobile computing and networking, MobiCom (pp. 339–352). New York: ACM. https://doi.org/10.1145/938985.939020.
Boddu, S., Philip, B. V., & Das, S. S. (2016). Analysis of bandwidth requirement of users in flexible reuse cellular networks. IEEE Communications Letters, 20(3), 614–617.
ITU-R. (2008). Guidelines for evolution of radio interface technologies for IMT advanced. ITU-R, M 2135.
Tadayon, N., & Aissa, S. (2014). Multi-channel cognitive radio networks: Modeling, analysis and synthesis. IEEE Journal on Selected Areas in Communications, 32(11), 2065–2074.
Nogueira, A., Salvador, P., Valadas, R., & Pacheco, A. (2011). Markovian modelling of internet traffic (pp. 98–124). Berlin, Heidelberg: Springer.
Minn, H., Zeng, M., & Bhargava, V. K. (2001). On ARQ scheme with adaptive error control. IEEE Transactions on Vehicular Technology, 50(6), 1426–1436.
Wu, J., Mehta, N. B., Molisch, A. F., & Zhang, J. (2011). Unified spectral efficiency analysis of cellular systems with channel-aware schedulers. IEEE Transactions on Communications, 59(12), 3463–3474.
Kleinrock, L. (1975). Queueing systems, vol. I: Theory (pp. 103–105). New York: Wiley Interscience.
Zhang, H., Huang, S., Jiang, C., Long, K., Leung, V. C. M., & Poor, H. V. (2017). Energy efficient user association and power allocation in millimeter-wave-based ultra dense networks with energy harvesting base stations. IEEE Journal on Selected Areas in Communications, 35(9), 1936–1947.
Zhang, H., Qiu, Y., Long, K., Karagiannidis, G. K., Wang, X., & Nallanathan, A. (2018). Resource allocation in noma-based fog radio access networks. IEEE Wireless Communications, 25(3), 110–115.
Zhang, H., Fang, F., Cheng, J., Long, K., Wang, W., & Leung, V. C. M. (2018). Energy-efficient resource allocation in noma heterogeneous networks. IEEE Wireless Communications, 25(2), 48–53.
Fang, F., Zhang, H., Cheng, J., & Leung, V. C. M. (2016). Energy-efficient resource allocation for downlink non-orthogonal multiple access network. IEEE Transactions on Communications, 64(9), 3722–3732.
Jain, R. K., Chiu, D.-M. W., & Hawe, W. R. (1984). A quantitative measure of fairness and discrimination for resource allocation in shared computer systems. Technical report, Dec.-TR-301, Digital Equipment Corporation. arxiv:9809099
Nain, G., Das, S. S., & Chatterjee, A. (2018). Low complexity user selection with optimal power allocation in downlink noma. IEEE Wireless Communications Letters, 7(2), 158–161.
Ding, Z., Lei, X., Karagiannidis, G. K., Schober, R., Yuan, J., & Bhargava, V. K. (2017). A survey on non-orthogonal multiple access for 5g networks: Research challenges and future trends. IEEE Journal on Selected Areas in Communications, 35(10), 2181–2195.
Hui, J. Y. (1988). Resource allocation for broadband networks. IEEE Journal on Selected Areas in Communications, 6(9), 1598–1608.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Palit, B., Das, S.S. A cross layer framework of Radio Resource Allocation for QoS provisioning in multi-channel fading wireless networks. Wireless Netw 26, 403–419 (2020). https://doi.org/10.1007/s11276-018-1821-1
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11276-018-1821-1