Skip to main content

Advertisement

Log in

Performance analysis of downlink NOMA–EH relaying network in the presence of residual transmit RF hardware impairments

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

In this paper, we investigate the effects of residual-transmit radio-frequency impairments on the downlink non-orthogonal multiple access system with perfect successive interference cancellation using an energy-harvesting (EH) relay in which nodes in the network are equipped with a single antenna. The source node communicates with two users with the help of the amplify-and-forward EH relay node. In addition, both the power-splitting relaying (PSR) and time-switching relaying (TSR) protocols are examined. To evaluate the performance of the proposed system, closed-form expressions of the outage performance and the available throughput are derived over Rayleigh fading channels. Moreover, the accuracy of analytical results is verified by a Monte Carlo simulation. The results show the effects of various parameters, such as power allocation factors, the relay node location, data rate, transmit hardware impairment level, and power allocation factors on the outage performance (\({\mathcal {OP}}\)) and throughput with two users for both PSR and TSR architectures in the presence of hardware impairments. Furthermore, these results are compared with performance of orthogonal multiple access (OMA) EH relaying system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ding, Z., Liu, Y., Choi, J., Sun, Q., & Elkashlan, M. (2017). Application of non-orthogonal multiple access in LTE and 5G networks. IEEE Communications Magazine, 55, 185–191.

    Article  Google Scholar 

  2. Riazul Islam, S. M., Avazov, N., & Dobre, O. A. (2017). Power-domain non-orthogonal multiple access (NOMA) in 5G systems: Potentials and challenges. IEEE Communications Surveys and Tutorials, 19, 721–742.

    Article  Google Scholar 

  3. Ding, Z., Peng, M., & Poor, H. V. (2015). Cooperative non-orthogonal multiple access in 5G systems. IEEE Communications Letters, 19(8), 1462–1465.

    Article  Google Scholar 

  4. Fazlul Kader, Md, Shahab, M. B., & Shin, S. Y. (2017). Exploiting non-orthogonal multiple Access in cooperative relay sharing. IEEE Communications Letters, 27, 1159–1162.

    Article  Google Scholar 

  5. Liang, X., Wu, Y., Ng, D. W. H., Zuo, Y., Jin, S., Zhu, H. (2017). Outage performance for cooperative NOMA transmission with an AF relay. IEEE Communications Letters, 21, 2428–2431.

    Article  Google Scholar 

  6. Liu, Y., Ding, Z., Elkashlan, M., & Yuan, J. (2016). Non-orthogonal multiple access in large-scale underlay cognitive radio networks. IEEE Transactions on Vehicular Technology, 65, 10152–10157.

    Article  Google Scholar 

  7. Paradiso, J., & Starner, T. (2005). Energy scavenging for mobile and wireless electronics. IEEE Pervasive Computing, 4(1), 18–27.

    Article  Google Scholar 

  8. Varshney, L. (2008). Transporting information and energy simultaneously. In IEEE international symposium on information theory, 2008. ISIT 2008 (pp. 1612–1616).

  9. Nasir, A. A., & Durrani, S. (2013). Relaying protocols for wireless energy harvesting and information processing. IEEE Transactions on Wireless Communications, 12(7), 3622–3636.

    Article  Google Scholar 

  10. Guo, W., & Wang, Y. (2017). Cooperative non-orthogonal multiple access with energy harvesting. Information, 8(3). https://doi.org/10.3390/info8030111.

  11. Ha, D.-B., & Nguyen, S. Q. (2017). Outage performance of energy harvesting DF relaying NOMA networks. Mobile Networks and Applications. https://doi.org/10.1007/s11036-017-0922-x.

    Article  Google Scholar 

  12. Han, W., Ge, J., & Men, J. (2016). Performance analysis for NOMA energy harvesting relaying networks with transmit antenna selection and maximal-ratio combining over Nakagami-m fading. IET Communications, 10, 2687–2693.

    Article  Google Scholar 

  13. Studer, C., Wenk, M., & Burg, A. (2010). MIMO transmission with residual transmit-RF impairments. In Proceeding of the ITG/IEEE workshop smart antennas (WSA) (pp. 189–196).

  14. Studer, C., Wenk, M., Burg, A. (2010). MIMO transmission with residual transmit-RF impairments. In International ITG workshop on smart antennas (WSA 2010).

  15. Matthaiou, M., Papadogiannis, A., Bjornson, E., & Debbah, M. (2013). Two-way relaying under the presence of relay transceiver hardware impairments. IEEE Communications Letters, 17(6), 91–94.

    Article  Google Scholar 

  16. Balatsoukas-Stimming, A., Austin, A. C. M., Belanovic, P., & Burg, A. (2014). Baseband and RF hardware impairments in full-duplex wireless systems: Experimental characterisation and suppression. arXiv:1412.4542.pdf.

  17. Zhang, X., Matthaiou, M., Coldrey, M., & Bjornson, E. (2014). Impact of residual transmit RF impairments on training-based MIMO systems. arXiv:1406.3638.pdf.

  18. Gustavsson, U., Sanchez-Perez, C., Eriksson, T., Athley, F., Durisi, G., Landin, P., Hausmair, K., Fager, C., & Svensson, L. (2014). On the impact of hardware impairments on massive MIMO. arXiv:1411.7197.pdf.

  19. Zarei, S., Gerstacker, W. H., & Aulin, J. (2017). Multi-cell massive MIMO systems with hardware impairments: Uplink-downlink duality and downlink precoding. IEEE Transactions on Wireless Communications, 16(8), 5115–5130.

    Article  Google Scholar 

  20. Tuan, V. P., & Kong, H. Y. (2017). Impact of residual transmit RF impairments on energy harvesting relay selection systems. International Journal of Electronics, 104(6), 928–941.

    Article  Google Scholar 

  21. Gradshteyn, I. S., & Ryzhik, I. M. (2014). Table of intergrals, series, and products (8th ed.). London: Academic.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thi Anh Le.

Appendices

Appendix 1: Proof of Theorem 1

This appendix derives \(OP_1^q\) in (26) at \({\mathcal {U}}_1\) in a cooperative NOMA–EH network employing perfect SIC with the residual transmit hardware impairment. According to (25), the factor \({\alpha _1} - {\gamma _1}\left( {{\alpha _2} + {K^2}} \right)\) can be positive or negative; thus, we consider the following two cases. If \({K^2} \ge \frac{{{\alpha _1}}}{{{\gamma _1}}} - {\alpha _2}\) the outage probability at \({\mathcal {U}}_1\) of PSR and TSR protocols is expressed as

$$\begin{aligned} OP_1^q = \Pr \left[ {{g_0} > \frac{{{\gamma _1}a_2^q + \frac{{{\gamma _1}}}{{{g_1}}}}}{{\underbrace{a_1^q\left( {{\alpha _1} - {\gamma _1}\left( {{\alpha _2} + {K^2}} \right) } \right) }_{ < 0}}}} \right] = 1 \end{aligned}$$
(32)

If \({K^2} \ge \frac{{{\alpha _1}}}{{{\gamma _1}}} - {\alpha _2}\), from (25) let denotes \(X = {g_0}\) and \(Y = {g_1}\), the outage probability at \({\mathcal {U}}_1\) with PSR and TSR protocols is expressed as

$$\begin{aligned} OP_1^q&= \Pr \left[ {X < \frac{{{\gamma _1}}}{{a_1^q\left( {{\alpha _1} - {\gamma _1}\left( {{\alpha _2} + {K^2}} \right) } \right) }}\left( {a_2^q + \frac{1}{Y}} \right) } \right] \nonumber \\ {}&= \int \limits _0^{ + \infty } {{F_X}\left( {\frac{{{\gamma _1}}}{{a_1^q\left( {{\alpha _1} - {\gamma _1}\left( {{\alpha _2} + {K^2}} \right) } \right) }}\left( {a_2^q + \frac{1}{y}} \right) } \right) {f_Y}\left( y \right) dy} \nonumber \\&= \int \limits _0^{ + \infty } {{\lambda _1}{e^{ - {\lambda _1}y}}\left( {1 - {e^{ - \frac{{{\lambda _0}{\gamma _1}}}{{a_1^q\left( {{\alpha _1} - {\gamma _1}\left( {{\alpha _2} + {K^2}} \right) } \right) }}\left( {a_2^q + \frac{1}{y}} \right) }}} \right) dy} \nonumber \\&= 1 - {\lambda _1}\exp \left( { - \frac{{a_2^q{\lambda _0}{\gamma _1}}}{{a_1^q\left( {{\alpha _1} - {\gamma _1}\left( {{\alpha _2} + {K^2}} \right) } \right) }}} \right) \nonumber \\&\qquad \times \,\int \limits _0^{ + \infty } {{e^{ - \left( {{\lambda _1}y + \frac{{{\lambda _0}{\gamma _1}}}{{a_1^q\left( {{\alpha _1} - {\gamma _1}\left( {{\alpha _2} + {K^2}} \right) } \right) }}\frac{1}{y}} \right) }}dy} \end{aligned}$$
(33)

By using [21, Eq. (3.324.1)], the OP of \({\mathcal {U}}_1\) in this case can be expressed as in (26). This ends the proof of Theorem 1.

Appendix 2: Proof of Theorem 2

This appendix derives \(OP_2^q\) in (29) at the user \({\mathcal {U}}_2\) in a cooperative NOMA–EH network employing perfect SIC with the residual transmit hardware impairment. According to (28), the factor \({\alpha _1} - {\gamma _1}\left( {{\alpha _2} + {K^2}} \right)\) can be positive or negative; thus, we consider the following cases.

In the case \(\frac{{{\alpha _1}}}{{{\gamma _1}}} - {\alpha _2} \le {K^2} \le \frac{{{\alpha _2}}}{{{\gamma _2}}}\), \(OP_2^q\) at \({\mathcal {U}}_2\) can be expressed as

$$\begin{aligned} OP_2^q = 1 - \Pr \left[ \begin{array}{l} {g_0}> \underbrace{\frac{{{\gamma _1}}}{{b_1^q\left( {{\alpha _1} - {\gamma _1}\left( {{\alpha _2} + {K^2}} \right) } \right) }}\left( {b_2^q + \frac{1}{{{g_2}}}} \right) }_{ > 0},\\ {g_0}< \underbrace{\frac{{{\gamma _2}}}{{b_1^q\left( {{\alpha _2} - {\gamma _2}{K^2}} \right) }}\left( {b_2^q + \frac{1}{{{g_2}}}} \right) }_{ < 0} \end{array} \right] = 1 \end{aligned}$$
(34)

In the case \({K^2} \ge \max \left\{ {\frac{{{\alpha _1}}}{{{\gamma _1}}} - {\alpha _2},\frac{{{\alpha _2}}}{{{\gamma _2}}}} \right\}\) from (28), \(OP_2^q\) can be expressed as

$$\begin{aligned} OP_2^q = 1 - \Pr \left[ \begin{array}{l} {g_0} > \underbrace{\frac{{{\gamma _1}}}{{b_1^q\left( {{\alpha _1} - {\gamma _1}\left( {{\alpha _2} + {K^2}} \right) } \right) }}\left( {b_2^q + \frac{1}{{{g_2}}}} \right) }_{< 0},\\ {g_0}< \underbrace{\frac{{{\gamma _2}}}{{b_1^q\left( {{\alpha _2} - {\gamma _2}{K^2}} \right) }}\left( {b_2^q + \frac{1}{{{g_2}}}} \right) }_{ < 0} \end{array} \right] = 1 \end{aligned}$$
(35)

In the case \(\frac{{{\alpha _2}}}{{{\gamma _2}}} \le {K^2} \le \frac{{{\alpha _1}}}{{{\gamma _1}}} - {\alpha _2}\) from (28), \(OP_2^q\) can be expressed as

$$\begin{aligned} OP_2^q = 1 - \Pr \left[ \begin{array}{l} {g_0}> \underbrace{\frac{{{\gamma _1}}}{{b_1^q\left( {{\alpha _1} - {\gamma _1}\left( {{\alpha _2} + {K^2}} \right) } \right) }}\left( {b_2^q + \frac{1}{{{g_2}}}} \right) }_{ > 0},\\ {g_0}< \underbrace{\frac{{{\gamma _2}}}{{b_1^q\left( {{\alpha _2} - {\gamma _2}{K^2}} \right) }}\left( {b_2^q + \frac{1}{{{g_2}}}} \right) }_{ < 0} \end{array} \right] = 1 \end{aligned}$$
(36)

In the case \({K^2} \le \min \left\{ {\frac{{{\alpha _2}}}{{{\gamma _2}}},\frac{{{\alpha _1}}}{{{\gamma _1}}} - {\alpha _2}} \right\}\), from (28),let denotes \(X = {g_0}\) and \(Z = {g_2}\), \(OP_2^q\) can be expressed as

$$\begin{aligned} OP_2^q&= 1 - \Pr \left[ \begin{array}{l} X> \frac{{{\gamma _1}}}{{b_1^q\left( {{\alpha _1} - {\gamma _1}\left( {{\alpha _2} + {K^2}} \right) } \right) }}\left( {b_2^q + \frac{1}{Z}} \right) ,\\ X> \frac{{{\gamma _2}}}{{b_1^q\left( {{\alpha _2} - {\gamma _2}{K^2}} \right) }}\left( {b_2^q + \frac{1}{Z}} \right) \end{array} \right] \nonumber \\&= 1 - \Pr \left[ {X> \frac{1}{{b_1^q}}\left( {b_2^q + \frac{1}{Z}} \right) \underbrace{\max \left\{ {\frac{{{\gamma _1}}}{{\left( {{\alpha _1} - {\gamma _1}\left( {{\alpha _2} + {K^2}} \right) } \right) }},\frac{{{\gamma _2}}}{{\left( {{\alpha _2} - {\gamma _2}{K^2}} \right) }}} \right\} }_\omega } \right] \nonumber \\&= 1 - \Pr \left[ {X > \frac{\omega }{{b_1^q}}\left( {b_2^q + \frac{1}{Z}} \right) } \right] = \Pr \left[ {X < \frac{\omega }{{b_1^q}}\left( {b_2^q + \frac{1}{Z}} \right) } \right] \end{aligned}$$
(37)

According to CDF and PDF in (1a) and (1b), (37) can be given by

$$\begin{aligned} OP_2^q&= \int \limits _0^{ + \infty } {{F_X}\left( {\frac{\omega }{{b_1^q}}\left( {b_2^q + \frac{1}{z}} \right) } \right) {f_Z}\left( z \right) dz} \nonumber \\&= \int \limits _0^{ + \infty } {{\lambda _2}{e^{ - {\lambda _2}z}}\left( {1 - \exp \left( { - {\lambda _0}\frac{\omega }{{b_1^q}}\left( {b_2^q + \frac{1}{z}} \right) } \right) } \right) dz} \nonumber \\&= 1 - \int \limits _0^{ + \infty } {{\lambda _2}{e^{ - {\lambda _2}z}}\exp \left( { - {\lambda _0}\frac{\omega }{{b_1^q}}\left( {b_2^q + \frac{1}{z}} \right) } \right) dz} \nonumber \\&= 1 - {\lambda _2}{e^{ - \frac{{\omega {\lambda _0}b_2^q}}{{b_1^q}}}}\int \limits _0^{ + \infty } {{e^{ - {\lambda _2}z - \frac{{{\lambda _0}\omega }}{{zb_1^q}}}}dz} \end{aligned}$$
(38)

By using [21, Eq. (3.324.1)], the OP of \({\mathcal {U}}_2\) in this case can be expressed as in (29). This ends the proof of Theorem 2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Le, T.A., Kong, H.Y. Performance analysis of downlink NOMA–EH relaying network in the presence of residual transmit RF hardware impairments. Wireless Netw 26, 1045–1055 (2020). https://doi.org/10.1007/s11276-018-1851-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-018-1851-8

Keywords

Navigation