Skip to main content
Log in

Power optimization with low complexity using scaled beamforming approach for a massive MIMO and small cell scenario

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Present wireless generation is now evolving from 4G to 5G with a large number of clients. Researchers across the globe are working to sustain the quality of service level, while meeting the increasing demand of the clients. Since, the number of clients are increasing, which give arise to a lot of problems like increased interference, complexity and significant amount of power consumption in the processing and transmission. This paper investigates potential improvements in power optimization by modifying the classical macro-cell with massive multiple input multiple output at the mobile tower, which is overlaid with small cell access points. The main aim of the paper is to optimize the utilization of energy, while maintaining the quality of service at the client end and power optimization at the small cell access point, and base station. But along with power optimization, complexity is also a prime objective of concern. Hence for optimizing or minimizing the power, while maintaining low complexity, a new low complexity algorithm is proposed and is compared with a classical relaxed zero-forcing beam forming algorithm and the optimal solution cases. The complexity analysis of this proposed approach has been done on the basis of change in the base stations and the number of UEs surrounding it. The potential merits of this proposed approach for different deployment scenarios, such as an urban macro heterogeneous deployment scenario in the 3GPP LTE Standard and an urban macro, sub-urban macro, and rural macro deployment scenario in the ITU-R M.2135 standard are analyzed by numerical calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Cheng, H. V., Persson, D., & Larsson, E. G. (2014). MIMO capacity under power amplifiers consumed power and per-antenna radiated power constraints. In 2014 IEEE 15th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC) (pp.179–183), 22–25 June 2014.

  2. Telatar, E. (1999). Capacity of multi-antenna Gaussian channels. European Transactions on Telecommunications,10(6), 585–596.

    Article  MathSciNet  Google Scholar 

  3. Zheng, X., Xie, Y., Li, J., & Stoica, P. (2007). MIMO transmit beamforming under uniform elemental power constraint. IEEE Transactions on Signal Processing,55(11), 5395–5406.

    Article  MathSciNet  Google Scholar 

  4. Vu, M. (2012). MIMO capacity with per-antenna power constraint. In 2011 IEEE Global Telecommunications Conference—GLOBECOM 2011, Kathmandu (pp. 1–5), January 2012.

  5. EARTH - energy aware radio and network technologies deliverable d2.3: Energy efficiency analysis of the reference systems, areas of improvements and target breakdown (2012). https://bscw.ict-earth.eu/pub/bscw.cgi/d71252/EARTHWP2D2.3v2.pdf

  6. Dohler, M., Heath, R., Lozano, A., Papadias, C., & Valenzuela, R. (2011). Is the PHY layer dead? IEEE Communications Magazine,49(4), 159–165.

    Article  Google Scholar 

  7. Fettweis, G., Lohning, M., Petrovic, D., Windisch, M., Zillmann, P., & Rave, W. (2005). Dirty RF: A new paradigm. IEEE International Symposium on Personal, Indoor and Mobile Radio Communications,4, 2347–2355.

    Google Scholar 

  8. He, A., Srikanteswara, S., Bae, K. K., Newman, T., Reed, J., Tranter, W., et al. (2011). Power consumption minimization for MIMO systems—A cognitive radio approach. IEEE Journal on Selected Areas in Communications,29(2), 469–479.

    Article  Google Scholar 

  9. Persson, D., Eriksson, T., & Larsson, E. G. (2014). Amplifier-aware multiple-input single-output capacity. IEEE Transactions on Communications,62(3), 913–919.

    Article  Google Scholar 

  10. Persson, D., Eriksson, T., & Larsson, E. G. (2013). Amplifier-aware multiple-input multiple-output power allocation. IEEE Communications Letters,17(6), 1112–1115.

    Article  Google Scholar 

  11. Rusek, F., Persson, D., Lau, B., Larsson, E., Marzetta, T., Edfors, O., et al. (2013). Scaling up MIMO: Opportunities and challenges with very large arrays. IEEE Signal Processing Magazine,30(1), 40–60.

    Article  Google Scholar 

  12. Hoydis, J., ten Brink, S., & Debbah, M. (2013). Massive MIMO in the UL/DL of cellular networks: How many antennas do we need? IEEE Journal on Selected Areas in Communication,31(2), 160–171.

    Article  Google Scholar 

  13. Parkvall, S., Dahlman, E., Jöngren, G., Landström, S., & Lindbom, L. (2011). Heterogeneous network deployments in LTE—The soft-cell approach. Ericsson Review, no. 2, 2011.

  14. Hoydis, J., Kobayashi, M., & Debbah, M. (2011). Green small-cell networks. IEEE Vehicular Technology Magazine,6(1), 37–43.

    Article  Google Scholar 

  15. Marzetta, T. (2010). Noncooperative cellular wireless with unlimited numbers of base station antennas. IEEE Transaction on Wireless Communication,9(11), 3590–3600.

    Article  Google Scholar 

  16. Ngo, H. Q., Larsson, E. G., & Marzetta, T. L. (2013). Energy and spectral efficiency of very large multiuser MIMO systems. IEEE Transaction on Communication,61(4), 1436–1449.

    Article  Google Scholar 

  17. Hsieh, H. Y., Wei, S. E., & Chien, C. P. (2014). Optimizing small cell deployment in arbitrary wireless networks with minimum service rate constraints. IEEE Transactions on Mobile Computing,13(8), 1801–1815.

    Article  Google Scholar 

  18. Gupta, A., & Jha, R. K. (2015). A survey of 5G network: Architecture and emerging technologies. IEEE Access,3, 1206–1232.

    Article  Google Scholar 

  19. Björnson, E., Larsson, E. G., & Marzetta, T. L. (2016). Massive MIMO: Ten myths and one critical question. IEEE Communication Magazine,54(2), 114–123.

    Article  Google Scholar 

  20. Liu, P., Jin, S., Jiang, T., Zhang, Q., & Matthaiou, M. (2017). Pilot power allocation through user grouping in multi-cell massive MIMO systems. IEEE Transaction on Communication,65(4), 1561–1574.

    Article  Google Scholar 

  21. Björnson, E., Sanguinetti, L., Hoydis, J., & Debbah, M. (2015). Optimal design of energy-efficient multi-user MIMO systems: Is massive MIMO the answer? IEEE Transaction on Wireless Communication,14(6), 3059–3075.

    Article  Google Scholar 

  22. Liu, P., Luo, K., Chen, D., & Jiang, T. (2018). Spectral efficiency analysis in cell-free massive MIMO systems with zero-forcing detector. IEEE Transaction on Communication. https://arxiv.org/abs/1805.10621

  23. Zhang, H., Liu, H., Cheng, J., & Leung, V. C. M. (2018). Downlink energy efficiency of power allocation and wireless backhaul bandwidth allocation in heterogeneous small cell networks. IEEE Transactions on Communications,66(4), 1705–1716.

    Article  Google Scholar 

  24. Zhang, H., Du, J., Cheng, J., Long, K., & Leung, V. C. M. (2018). Incomplete CSI based resource optimization in SWIPT enabled heterogeneous networks: A non-cooperative game theoretic approach. IEEE Transactions on Wireless Communications,17(3), 1882–1892.

    Article  Google Scholar 

  25. Zhang, H., Nie, Y., Cheng, J., Leung, V. C. M., & Nallanathan, A. (2017). Sensing time optimization and power control for energy efficient cognitive small cell with imperfect hybrid spectrum sensing. IEEE Transactions on Wireless Communications,16(2), 730–743.

    Article  Google Scholar 

  26. Zhang, H., Huang, S., Jiang, C., Long, K., Leung, V. C. M., & Poor, H. V. (2017). Energy efficient user association and power allocation in millimeter-wave-based ultra dense networks with energy harvesting base stations. IEEE Journal on Selected Areas in Communications,35(9), 1936–1947.

    Article  Google Scholar 

  27. Zhang, H., Liu, N., Long, K., Cheng, J., Leung, V. C. M., & Hanzo, L. (2018). Energy efficient subchannel and power allocation for software-defined heterogeneous VLC and RF networks. IEEE Journal on Selected Areas in Communications,36(3), 658–670.

    Article  Google Scholar 

  28. Holma, H., & Toskala, A. (2012). LTE advanced: 3GPP solution for IMT advanced (1st ed.). New York: Wiley.

    Book  Google Scholar 

  29. Bjornson, E., Jaldén, N., Bengtsson, M., & Ottersten, B. (2011). Optimality properties, distributed strategies, and measurement-based evaluation of coordinated multicell OFDMA transmission. IEEE Transaction on Signal Processing,59(12), 6086–6101.

    Article  MathSciNet  Google Scholar 

  30. Cui, S., Goldsmith, A., & Bahai, A. (2005). Energy-constrained modulation optimization. IEEE Transaction on Wireless Communication,4(5), 2349–2360.

    Article  Google Scholar 

  31. Auer, G., Blume, O., Giannini, V., Godor, I., Imran, M., Jading, Y., et al. (2012). D2.3: Energy efficiency analysis of the reference systems, areas of improvements and target breakdown. INFSO-ICT-247733 EARTH, ver. 2.0.

  32. Ng, D., Lo, E., & Schober, R. (2012). Energy-efficient resource allocation in OFDMA systems with large numbers of base station antennas. IEEE Transaction on Wireless Communication,11(9), 3292–3304.

    Article  Google Scholar 

  33. Bengtsson, M., & Ottersten, B. (2001). Optimal and suboptimal transmit beamforming. In L. C. Godara (Ed.), Handbook of antennas in wireless communications. Boca Raton: CRC Press.

    Google Scholar 

  34. Boyd, S., & Vandenberghe, L. (2004). Convex optimization. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  35. Björnson, E., & Jorswieck, E. (2013). Optimal resource allocation in coordinated multi-cell systems. Foundations and Trends in Communications and Information Theory,9(2–3), 113–381.

    Article  Google Scholar 

  36. Bjornson, E., Kountouris, M., & Debbah, M. (2013). Massive MIMO and small cells: Improving energy efficiency by optimal soft-cell coordination. In 2013 20th International Conference on Telecommunications (ICT) (pp. 1–8).

  37. Park, J., Lee, G., Sung, Y., & Yukawa, M. (2013). Coordinated beamforming with relaxed zero forcing: the sequential orthogonal projection combining method and rate control. IEEE Transactions on Signal Processing,61(12), 3100–3112.

    Article  Google Scholar 

  38. Further advancements for E-UTRA physical layer aspects (Release 12). 3GPP TS 36.942 (2014).

  39. Series, M. (2009). Guidelines for evaluation of radio interface technologies for IMT-advanced. ITU: Technical report.

    Google Scholar 

  40. Dong, W., Zhang, J., Gao, X., Zhang, P., & Wu, Y. (2007). Cluster identification and properties of outdoor wideband MIMO channel. In Vehicular Technology Conference, 2007. VTC-2007 Fall. 2007 IEEE 66th (pp. 829–833), September 30, 2007–October 3, 2007.

  41. Lu, Y., Zhang, J., Gao, X., Zhang, P., & Wu, Y. (2007). Outdoor-indoor propagation characteristics of peer-to-peer system at 5.25 GHz. In Vehicular Technology Conference, 2007. VTC-2007 Fall. 2007 IEEE 66th (pp. 869–873), September 30, 2007-October 3, 2007.

  42. Xu, D., Zhang, J., Gao, X., Zhang, P., & Wu, Y. (3007). Indoor office propagation measurements and path loss models at 5.25 GHz. IN Vehicular Technology Conference, 2007. VTC-2007 Fall. 2007 IEEE 66th (pp. 844–848), September 30, 2007-October 3, 2007.

  43. Zhang, J., Gao, X., Zhang, P., & Yin, X. (2007). Propagation characteristics of wideband MIMO channel in hotspot areas at 5.25 GHZ. In IEEE 18th International Symposium on Personal, Indoor and Mobile Radio Communications, 2007. PIMRC 2007 (pp. 1, 5, 3–7) September 2007.

  44. Zhang, J., Dong, D., Liang, Y., Nie, X., Gao, X., Zhang, Y., Huang, C., & Liu, G. (2008). Propagation characteristics of wideband MIMO channel in urban micro- and macrocells. In: IEEE 19th International Symposium on Personal, Indoor and Mobile Radio Communications, 2008. PIMRC 2008 (pp. 1, 6, 15–18).

  45. Sturm, J. (1999). Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optimization Methods and Software,11–12, 625–653.

    Article  MathSciNet  Google Scholar 

  46. CVX Research Inc. (2012). CVX: Matlab software for disciplined convex programming, version 2.0 beta. http://cvxr.com/cvx.

  47. Gupta, A., & Jha, R. K. (2016). Power optimization using massive MIMO and small cells approach in different deployment scenarios. Wireless Networks,23, 959–973.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are willing to present a vote of thanks to the 5G and IoT Lab, Department of Electronics and Communication Engineering, and TBIC, Shri Mata Vaishno Devi University, Katra, Jammu. This work has been patented under the Application Number TEMP/E-2/783/2016-DEL, with the title “Power Optimization with Low Complexity using Scaled Beamforming Approach”.

Funding

Funding was provided by SMVDU TBIC, TEQUIP III.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akhil Gupta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, A., Jha, R.K. Power optimization with low complexity using scaled beamforming approach for a massive MIMO and small cell scenario. Wireless Netw 26, 1165–1176 (2020). https://doi.org/10.1007/s11276-018-1856-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-018-1856-3

Keywords

Navigation