Skip to main content

Advertisement

Log in

Energy efficient clustering algorithm for the mobility support in an IEEE 802.15.4 based wireless sensor network

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

The traditional clustering algorithm is an advanced routing protocol for enhancing an energy efficiency, which selects a cluster head and transmits the aggregated data arriving from the sensor nodes in the cluster to a gateway. However, the existing literature works were not suitable for an IEEE 802.15.4 beacon enabled mode and did not provide the combined solution for an energy efficient scheduling and handover of the sensor nodes. To address these problems, in this paper, we propose an energy efficient clustering algorithm for the mobility support in IEEE 802.15.4 networks. The simulation results show that the proposed scheme reduces the energy consumption and the packet loss, thus enhancing the performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Stojmenovic, I., Seddigh, M., & Zunic, J. (2002). Dominating sets and neighbor elimination-based broadcasting algorithms in wireless networks. IEEE Transactions on Parallel and Distributed Systems, 13(1), 14–25.

    Article  Google Scholar 

  2. Mišić, J., Shafi, S., & Mišić, V. B. (2006). Cross-layer activity management in a 802.15.4 sensor network. IEEE Communications Magazine, 44(1), 131–136.

    Article  Google Scholar 

  3. Chamberland, J.-F., & Veeravalli, V. V. (2007). Wireless sensors in distributed detection applications. IEEE Signal Processing Magazine, 24(3), 16–25.

    Article  Google Scholar 

  4. Boyinbode, O., Le, H., Mbogho, A., Takizawa, M., Poliah, R. (2010). A survey on clustering algorithms for wireless sensor networks. In 13th International Conference Network-Based Information Systems, Takayama, Gifu, Japan (pp. 358–364).

  5. Li, X., Fletcher, G., Nayak, A., & Stojmenovic, I. (2013). Randomized carrier-based sensor relocation in wireless sensor and robot networks. Ad Hoc Networks, 11(7), 1951–1962.

    Article  Google Scholar 

  6. IEEE P802.15 Working Group. (2006). Wireless medium access control and physical layer specications for low-rate wireless personal area networks. IEEE Standard, 802.15.4-2006. ISBN: 0-7381-4997-7.

  7. Luo, H., Ye, F., Cheng, J., Lu, S., & Zhang, L. (2005). TTDD: Two-tier data dissemination in large-scale wireless sensor networks. Wireless Networks, 11(1), 161–175.

    Article  Google Scholar 

  8. Awad, F. (2012). Energy-efficient and coverage-aware clustering in wireless sensor networks. Wireless Engineering and Technology, 3(3), 142–151.

    Article  MathSciNet  Google Scholar 

  9. Azizi, N., Karimpour, J., & Seifi, F. (2012). HCTE: Hierarchical clustering based routing algorithm with applying the two cluster heads in each cluster for energy balancing in WSN. IJCSI International Journal of Computer Science, 9(1), 57–61.

    Google Scholar 

  10. Ghelichi, M., Jahanbakhsh, S., Sanaei, E. (2008). RCCT: Robust clustering with cooperative transmission for energy efficient wireless sensor networks. In 5th international conference information technology: New generations (ITNG 2008), Las Vegas, NV (pp. 761–766).

  11. Naeimi, S., Ghafghazi, H., Chow, C.-O., & Ishii, H. (2012). A survey on the taxonomy of cluster-based routing protocols for homogeneous wireless sensor networks. Sensors, 12(6), 7350–7409.

    Article  Google Scholar 

  12. Heinzelman, W., Chandrakasan, A., & Balakrishnan, H. (2002). An application-specific protocol architecture for wireless microsensor networks. IEEE Transactions on Wireless Communications, 1(4), 660–670.

    Article  Google Scholar 

  13. Kim, J., Lee, J., & Rim, K. (2009). 3DE: Selective cluster head selection scheme for energy efficiency in wireless sensor networks. In: Proceedings of the 2nd international conference on PErvasive technologies related to assistive environments, PETRA’09, New York, NY, USA, 1-7.

  14. Huang, Y.-K., Pang, A.-C., Hsiu, P.-C., Zhuang, W., & Liuy, P. (2012). Distributed throughput optimization for ZigBee clustertree networks. IEEE Transactions on Parallel and Distributed Systems, 23(3), 513–520.

    Article  Google Scholar 

  15. Younis, O., & Fahmy, S. (2004). HEED: A hybrid, energy-efficient, distributed clustering approach for ad-hoc sensor networks. IEEE Transactions on Mobile Computing, 3(4), 366–379.

    Article  Google Scholar 

  16. Tang, F., You, I., Guo, S., Guo, M., & Ma, Y. (2010). A chain-cluster based routing algorithm for wireless sensor networks. Journal of Intelligent Manufacturing, 23(4), 1305–1313.

    Article  Google Scholar 

  17. Ding, P., Holliday, J., & Celik, A. (2005). Distributed energy-efficient hierarchical clustering for wireless sensor networks. In Proceedings of the first IEEE international conference on distributed computing in sensor systems (pp. 322–339).

  18. Fan, Z., & Jin, Z. (2012). A multi-weight based clustering algorithm for wireless sensor networks. Guangzhou: College of Computer Science & Educational Software Guangzhou University.

    Google Scholar 

  19. Azizi, N., Karimpour, J., & Seifi, F. (2012). HCTE: Hierarchical Clustering based routing algorithm with applying the Two cluster heads in each cluster for Energy balancing in WSN. IJCSI International Journal of Computer Science, 9(1), 57–61.

    Google Scholar 

  20. Delavar, A. G., Shamsi, S., Mirkazemi, N., & Artin, J. (2012). SLGC: A new cluster routing algorithm in wireless sensor network for decrease energy consumption. International Journal of Computer Science, Engineering and Application, 2(3), 39–51.

    Article  Google Scholar 

  21. Hanzalek, Z., & Jurcik, P. (2010). Energy efficient scheduling for cluster-tree Wireless Sensor Networks with time-bounded data flows: Application to IEEE 802.15.4/ZigBee. IEEE Transactions on Industrial Informatics, 6(3), 438–450.

    Article  Google Scholar 

  22. Saleh, A. B., Sibley, M., Mather, P. (2014). Energy efficient cluster scheduling and interference mitigation for IEEE 802.15.4 network. In Computer science and engineering conference (ICSEC), Khon Kaen, Thailand (pp. 244–250). https://doi.org/10.1109/icsec.2014.6978202.

  23. Shih, Y.-Y., Chung, W.-H., Hsiu, P.-C., & Pang, A.-C. (2013). A mobility-aware node deployment and tree construction framework for ZigBee wireless networks. IEEE Transactions on Vehecular Technology, 62(6), 2763–2779.

    Article  Google Scholar 

  24. Prinslin, L, Janani, V. (2014). Efficient data delivery in mobility aware ZigBee wireless networks. In International conference on information communication and embedded systems (ICICES), Cairo, Egypt (pp. 1–5).

  25. Ayoub, Z. T., & Ouni, S. (2014). New re-association procedures for reliable handover in IEEE 802.15. 4 wireless sensor networks. In: Ad Hoc networks lecture notes of the institute for computer sciences, social informatics and telecommunications engineering (Vol. 129, pp. 3–14).

  26. Javed, M., Zen, K., Bin Lenando, H., & Zen, H. (2013). Fast association process (FAP) of beacon enabled for IEEE 802.15.4 in strong mobility. In: International conference on information technology in Asia (CITA), Kota Samarahan, Malaysia (pp. 1–8).

  27. Wang, J., Chalhoub, G., and Misson, M. (2017). Mobility support enhancement for RPL. In International conference on performance evaluation and modeling in wired and wireless networks (PEMWN), Paris, France (pp. 1–6).

  28. Nepali, S., & Shin, J. (2017). Neighbour aware fast association scheme over IEEE 802.15.4. In International conference on frontiers of sensors technologies (ICFST), Shenzhen, China (pp. 294–298).

  29. Wang, P., Li, C., & Zheng, J. (2007). Distributed data aggregation using clustered slepian-wolf coding in wireless sensor networks. In IEEE international conference on communications (ICC), Glasgow, UK (pp. 3616–3622).

  30. Zheng, J., Wang, P., Li, C., & Mouftah, H. T. (2008). An efficient fault- prevention clustering protocol for robust underwater sensor networks. In IEEE international conference on communications (ICC), Beijing, China (pp. 2802–2807).

  31. Tong, H., & Zheng, J. (2010). An energy and distance based clustering protocol for wireless sensor networks. In IEEE international conference on communication technology (ICCT’11), Jinan, China (pp. 666–670).

  32. Tavakoli, H., Miic, J., Naderi, M., & Miic, V. B. (2013). Energy-efficient clustering in IEEE 802.15. 4 wireless sensor networks. In 2013 IEEE 33rd international conference on distributed computing systems workshops, Philadelphia, PA, USA (pp. 262–267).

  33. OMNeT++ Network Simulation Framework. http://www.omnetpp.org.

  34. Chen, F., & Dressler, F. (2007). A Simulation Model of IEEE 802.15.4 in OMNeT++. In Proceedings of 6. GI/ITG KuVS Fachgespräch Drahtlose Sensornetze, Aachen, Germany (pp. 35–38).

  35. Hurtado-López, J., Casilari, E., Ariza, A. (2009). Enabling IEEE 802.15.4 cluster-tree topologies in OMNeT++. In: Proceedings of the 2nd international conference on simulation tools and techniques, Brussels (pp. 1–5).

  36. IEEE Std 802.16-2012. (2012). IEEE standard for local and metropolitan area networks part 16: Air interface for broadband wireless access systems. IEEE Std 802.16-2012 (revision of IEEE Std 802.16-2009).

  37. Borman, C. et al. (2001). RObust header compression (ROHC): Framework and four profiles: RTP, UDP, ESP, and uncompressed, IETF. https://tools.ietf.org/html/rfc3095.

  38. Montenegro, G. et al. (2007). Transmission of IPv6 packets over IEEE 802.15.4 networks, IETF. https://tools.ietf.org/html/rfc4944.

  39. Hui, J., & Thubert, P. (2011). Compression format for IPv6 datagrams over IEEE 802.15.4-based networks, IETF. https://tools.ietf.org/html/rfc6282.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-Woo Kim.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, JW., Kim, JW. Energy efficient clustering algorithm for the mobility support in an IEEE 802.15.4 based wireless sensor network. Wireless Netw 25, 3441–3452 (2019). https://doi.org/10.1007/s11276-019-01939-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-019-01939-2

Keywords

Navigation