Skip to main content
Log in

Exploring network-level performances of wireless nanonetworks utilizing gains of different types of nano-antennas with different materials

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Wireless nanonetworks are not a simple extension of traditional communication networks at the nano-scale. Owing to being a completely new communication paradigm, existing research in this field is still at an embryonic stage. Furthermore, most of the existing studies focus on performance enhancement of nanonetworks via designing new channel models and routing protocols. However, the impacts of different types of nano-antennas on the network-level performances of the wireless nanonetworks remain still unexplored in the literature. Therefore, in this paper, we explore the impacts of different well-known types of antennas such as patch, dipole, and loop nano-antennas on the network-level performances of wireless nanonetworks. We also investigate the performances of nanonetworks for different types of traditional materials (e.g., copper) and for nanomaterials (e.g., carbon nanotubes and graphene). We perform rigorous simulation using our customized ns-2 simulation to evaluate the network-level performances of nanonetworks exploiting different types of nano-antennas using different materials. Our evaluation reveals a number of novel findings pertinent to finding an efficient nano-antenna from its several alternatives for enhancing network-level performances of nanonetworks. Our evaluation demonstrates that a dipole nano-antenna using copper material exhibits around 51% better throughput and about 33% better end-to-end delay compared to other alternatives for large-size nanonetworks. Furthermore, our results are expected to exhibit high impacts on the future design of wireless nanonetworks through facilitating the process of finding the suitable type of nano-antenna and suitable material for the nano-antennas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Abadal, S., Llatser, I., Alarcón, E., & Cabellos-Aparicio, A. (2014). Cooperative signal amplification for molecular communication in nanonetworks. Wireless Networks, 20(6), 1611–1626.

    Article  Google Scholar 

  2. Afsana, F., Mamun, S., Kaiser, M., & Ahmed, M. (2015). Outage capacity analysis of cluster-based forwarding scheme for body area network using nano-electromagnetic communication. In EICT (pp. 383–388). IEEE, Khulna, Bangladesh.

  3. Akkari, N., Jornet, J. M., Wang, P., Fadel, E., Elrefaei, L., Malik, M. G. A., et al. (2016). Joint physical and link layer error control analysis for nanonetworks in the terahertz band. Wireless Networks, 22(4), 1221–1233.

    Article  Google Scholar 

  4. Akyildiz, I. F., & Jornet, J. M. (2010). Electromagnetic wireless nanosensor networks. Nano Communication Networks, 1(1), 3–19.

    Article  Google Scholar 

  5. Antenna-Theorycom. (2016a). Dipole antenna. www.antenna-theory.com/antennas/shortdipole.php. Accessed December 30, 2018.

  6. Antenna-Theorycom. (2016b). Wave impedance. https://www.its.bldrdoc.gov/fs-1037/dir-040/_5856.htm. Accessed December 30, 2018.

  7. Atakan, B., & Akan, O. B. (2010). Carbon nanotube-based nanoscale ad hoc networks. Communications Magazine, 48(6), 129–135.

    Article  Google Scholar 

  8. Aylott, J. W. (2003). Optical nanosensorsan enabling technology for intracellular measurements. Analyst, 128(4), 309–312.

    Article  Google Scholar 

  9. Balanis, C. A. (2016). Antenna theory: Analysis and design. Hoboken: Wiley.

    Google Scholar 

  10. Balasubramaniam, S., et al. (2012). Opportunistic routing through conjugation in bacteria communication nanonetwork. Nano Communication Networks, 3(1), 36–45.

    Article  Google Scholar 

  11. Botello-Mendez, A. R., Cruz-Silva, E., Romo-Herrera, J. M., Lopez-Urias, F., Terrones, M., Sumpter, B. G., et al. (2011). Quantum transport in graphene nanonetworks. Nano Letters, 11(8), 3058–3064.

    Article  Google Scholar 

  12. Che, R., Peng, L. M., Duan, X. F., Chen, Q., & Liang, X. (2004). Microwave absorption enhancement and complex permittivity and permeability of fe encapsulated within carbon nanotubes. Advanced Materials, 16(5), 401–405.

    Article  Google Scholar 

  13. Chen, C. J., Haik, Y., & Chatterjee, J. (2005). Development of nanotechnology for biomedical applications. In Conference, emerging information technology 2005 (pp. 1–4). IEEE, San Diego, CA.

  14. Chou, C. T. (2012). Molecular circuits for decoding frequency coded signals in nano-communication networks. Nano Communication Networks, 3(1), 46–56.

    Article  Google Scholar 

  15. Ebbesen, T., Lezec, H., Hiura, H., Bennett, J., Ghaemi, H., Thio, T., et al. (1996). Electrical-conductivity of individual carbon nanotubes. Nature, 382(6586), 54–56.

    Article  Google Scholar 

  16. Elayan, H., Stefanini, C., Shubair, R. M., & Jornet, J. M. (2018). End-to-end noise model for intra-body terahertz nanoscale communication. IEEE Transactions on Nanobioscience, 17(4), 464–473.

    Article  Google Scholar 

  17. Fang, D. G. (2009). Antenna theory and microstrip antennas. Boca Raton: CRC Press.

    Google Scholar 

  18. Freitas, R. A. (2005). What is nanomedicine? Nanomedicine: Nanotechnology. Biology and Medicine, 1(1), 2–9.

    Google Scholar 

  19. globe, C. (2016). Skin effect. https://circuitglobe.com/skin-effect.html. Accessed December 24, 2018.

  20. Guney, A., Atakan, B., & Akan, O. B. (2012). Mobile ad hoc nanonetworks with collision-based molecular communication. IEEE Transactions on Mobile Computing, 11(3), 353–366.

    Article  Google Scholar 

  21. Hansen, D. C. (2008). Metal corrosion in the human body: The ultimate bio-corrosion scenario. The Electrochemical Society Interface, 17(2), 31–34.

    Google Scholar 

  22. Ian, F., Akyildiz, M. P., & Jornet, J. M. (2011). Nanonetworks: A new frontier in communications. Communications of the ACM, 54(11), 84–89.

    Article  Google Scholar 

  23. Johari, P., & Jornet, J. M. (2018). Nanoscale optical wireless channel model for intra-body communications: Geometrical, time, and frequency domain analyses. IEEE Transactions on Communications, 66(4), 1579–1593.

    Article  Google Scholar 

  24. Jornet, J. M. (2012). A joint energy harvesting and consumption model for self-powered nano-devices in nanonetworks. In 2012 IEEE international conference on communications (ICC) (pp. 6151–6156). IEEE, Ottwa, Canada.

  25. Jornet, J. M., & Akyildiz, I. F. (2010). Channel capacity of electromagnetic nanonetworks in the terahertz band. In 2010 IEEE international conference on communications (ICC) (pp. 1–6). IEEE, Cape Town, South Africa.

  26. Jornet, J. M., & Akyildiz, I. F. (2010b). Graphene-based nano-antennas for electromagnetic nanocommunications in the terahertz band. In Proceedings of the 4th European conference on antennas and propagation (EuCAP) (pp. 1–5). IEEE, Barcelona, Spain.

  27. Jornet, J. M., & Akyildiz, I. F. (2011a). Information capacity of pulse-based wireless nanosensor networks. In 8th annual IEEE communications society conference on insensor, mesh and ad hoc communications and networks (SECON) (pp. 80–88). IEEE, Utah, USA.

  28. Jornet, J. M., & Akyildiz, I. F. (2011). Low-weight channel coding for interference mitigation in electromagnetic nanonetworks in the terahertz band. In 2011 IEEE international conference on communications (ICC) (pp. 1–6). IEEE, Kyoto, Japan.

  29. Jornet, J. M., & Akyildiz, I. F. (2013). Graphene-based plasmonic nano-antenna for terahertz band communication in nanonetworks. IEEE Journal on Selected Areas in Communications, 31(12), 685–694.

    Article  Google Scholar 

  30. Jornet, J. M., Pujol, J. C., & Pareta, J. S. (2012). Phlame: A physical layer aware mac protocol for electromagnetic nanonetworks in the terahertz band. Nano Communication Networks, 3(1), 74–81.

    Article  Google Scholar 

  31. Kadloor, S., Adve, R. S., & Eckford, A. W. (2012). Molecular communication using brownian motion with drift. IEEE Transactions on NanoBioscience, 11(2), 89–99.

    Article  Google Scholar 

  32. Lehtomäki, J. J., Bicen, A. O., & Akyildiz, I. F. (2015). On the nanoscale electromechanical wireless communication in the VHF band. IEEE Transactions on Communications, 63(1), 311–323.

    Article  Google Scholar 

  33. Liaskos, C., & Tsioliaridou, A. (2015). A promise of realizable, ultra-scalable communications at nano-scale: A multi-modal nano-machine architecture. IEEE Transactions on Computers, 64(5), 1282–1295.

    Article  MathSciNet  MATH  Google Scholar 

  34. Liu, Q., He, P., Yang, K., & Leng, S. (2014). Inter-symbol interference analysis of synaptic channel in molecular communications. In IEEE international conference on communications (ICC) (pp. 4424–4429). IEEE, Kyoto, Japan.

  35. Llatser, I., Kremers, C., Cabellos-Aparicio, A., Jornet, J. M., Alarcón, E., & Chigrin, D. N. (2012). Graphene-based nano-patch antenna for terahertz radiation. Photonics and Nanostructures-Fundamentals and Applications, 10(4), 353–358.

    Google Scholar 

  36. Locatelli, A. (2011). Peculiar properties of loop nanoantennas. IEEE Photonics Journal, 3(5), 845–853.

    Article  Google Scholar 

  37. Matte, H. R., Subrahmanyam, K., & Rao, C. (2009). Novel magnetic properties of graphene: Presence of both ferromagnetic and antiferromagnetic features and other aspects. The Journal of Physical Chemistry C, 113(23), 9982–9985.

    Article  Google Scholar 

  38. Mohammadi, A., Sandoghdar, V., & Agio, M. (2009). Gold, copper, silver and aluminum nanoantennas to enhance spontaneous emission. Journal of Computational and Theoretical Nanoscience, 6(9), 2024–2030.

    Article  Google Scholar 

  39. Moore, M. J., & Nakano, T. (2011a). Addressing by beacon distances using molecular communication. Nano Communication Networks, 2(2), 161–173.

    Article  Google Scholar 

  40. Moore, M. J., & Nakano, T. (2011b). Synchronization of inhibitory molecular spike oscillators. In International conference on bio-inspired models of network, information, and computing systems (pp. 183–195). Springer.

  41. Nafari, M., & Jornet, J. M. (2017). Modeling and performance analysis of metallic plasmonic nano-antennas for wireless optical communication in nanonetworks. IEEE Access, 5, 6389–6398.

    Article  Google Scholar 

  42. Nakano, T., & Moore, M. (2010). In-sequence molecule delivery over an aqueous medium. Nano Communication Networks, 1(3), 181–188.

    Article  Google Scholar 

  43. Nakano, T., & Shuai, J. (2011). Repeater design and modeling for molecular communication networks. In 2011 IEEE conference on computer communications workshops (INFOCOM WKSHPS) (pp. 501–506). IEEE, Shanghai, China.

  44. Nakano, T., Okaie, Y., & Liu, J. Q. (2012). Channel model and capacity analysis of molecular communication with Brownian motion. IEEE Communications Letters, 16(6), 797–800.

    Article  Google Scholar 

  45. Piro, G., Grieco, L. A., Boggia, G., & Camarda, P. (2013). Nano-sim: Simulating electromagnetic-based nanonetworks in the network simulator 3. In Proceedings of the 6th international ICST conference on simulation tools and techniques, ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering) (pp. 203–210). Cannes, France.

  46. Razzari, L., Toma, A., Clerici, M., Shalaby, M., Das, G., Liberale, C., et al. (2013). Terahertz dipole nanoantenna arrays: Resonance characteristics. Plasmonics, 8(1), 133–138.

    Article  Google Scholar 

  47. Srinivas, K., Eckford, A. W., & Adve, R. S. (2012). Molecular communication in fluid media: The additive inverse gaussian noise channel. IEEE Transactions on Information Theory, 58(7), 4678–4692.

    Article  MathSciNet  MATH  Google Scholar 

  48. Tsioliaridou, A., Liaskos, C., Ioannidis, S., & Pitsillides, A. (2015). Corona: A coordinate and routing system for nanonetworks. In Proceedings of the second annual international conference on nanoscale computing and communication (pp. 18:1–18:6). ACM, Boston, MA, USA.

  49. Tsioliaridou, A., Liaskos, C., Dedu, E., & Ioannidis, S. (2017). Packet routing in 3d nanonetworks: A lightweight, linear-path scheme. Nano Communication Networks, 12, 63–71.

    Article  Google Scholar 

  50. Wang, M., Zhou, J. H., Fang, Y. T., Xu, T., Zhou, J., & Wu, Q. (2018). Three-arm windmill plasmonic nanoantenna: Polarization and symmetry-dependent optical characteristics. In 2018 11th international symposium on communication systems, networks & digital signal processing (CSNDSP) (pp. 1–6). IEEE, Budapest, Hungary.

  51. Wang, Z. L. (2008). Towards self-powered nanosystems: From nanogenerators to nanopiezotronics. Advanced Functional Materials, 18(22), 3553–3567.

    Article  Google Scholar 

  52. Yu, J., Huang, X., Wu, C., & Jiang, P. (2011). Permittivity, thermal conductivity and thermal stability of poly (vinylidene fluoride)/graphene nanocomposites. IEEE Transactions on Dielectrics and Electrical Insulation, 18(2), 478–484.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Novia Nurain.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nurain, N., Talukder, B.M.S.B., Choudhury, T. et al. Exploring network-level performances of wireless nanonetworks utilizing gains of different types of nano-antennas with different materials. Wireless Netw 25, 2651–2664 (2019). https://doi.org/10.1007/s11276-019-01977-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-019-01977-w

Keywords

Navigation