Skip to main content
Log in

A stable clustering algorithm using the traffic regularity of buses in urban VANET scenarios

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Vehicular ad-hoc networks (VANETs) use clustering to manage data dissemination among vehicles. However, the high dynamic mobility of vehicles can lead to frequent re-clustering and decreased cluster stability. In previous work, cluster heads are selected generally based on mobility characteristics of vehicles, failing to take into account spatial and temporal dependency. Several studies have proposed cluster management mechanisms that increase cluster stability. However, in doing so these mechanisms generate excessive communication packets. In this paper, we propose CATRB, a stable clustering algorithm that uses the traffic regularity of buses while considering the mobility of vehicles such as velocity, position, and direction. In particular, we use the fixed routes of buses in urban areas as a reference index. In a regular triangle, its centroid, incenter, and circumcenter are all at the same point. Our scheme applies this idea to choose the most appropriate cluster header in VANETs. We develop an analytic model and a simulation model to evaluate the performance of CATRB. Simulation results show that the proposed scheme significantly improves cluster stability by decreasing the number of cluster head changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Ahizoune, A., & Hafid, A. (2012) A new stability based clustering algorithm (SBCA) for VANETs. In 2012 IEEE 37th conference on local computer networks workshops (LCN Workshops) (pp. 843–847). https://doi.org/10.1109/LCNW.2012.6424072.

  2. Alsuhli, G. H., Khattab, A., & Fahmy, Y. A. (2019). Double-head clustering for resilient VANETs. Wireless Communications and Mobile Computing, 2019, 1–17. https://doi.org/10.1155/2019/2917238.

    Article  Google Scholar 

  3. Barba, L., Bose, P., & Langerman, S. (2014). Optimal algorithms for constrained 1-center problems. Latin American symposium on theoretical informatics (pp. 84–95). Berlin: Springer. https://doi.org/10.1007/978-3-642-54423-1_8.

    Chapter  Google Scholar 

  4. Basu, P., Khan, N., & Little, T.D.C. (2001) A mobility based metric for clustering in mobile ad hoc networks. In: 2001 International conference on distributed computing systems workshop (pp. 413–418). https://doi.org/10.1109/CDCS.2001.918738

  5. Chatterjee, M., Das, S. K., Turgut, D. (2000) An on-demand weighted clustering algorithm (WCA) for ad hoc networks. In Global Telecommunications Conference, 2000. GLOBECOM ’00. IEEE (vol. 3, pp. 1697–1701).

  6. Chen, Y., Fang, M., Shi, S., Guo, W., & Zheng, X. (2015). Distributed multi-hop clustering algorithm for VANETs based on neighborhood follow. EURASIP Journal on Wireless Communications and Networking, 1, 1–12. https://doi.org/10.1186/s13638-015-0327-0.

    Article  Google Scholar 

  7. Cheng, X., Huang, B., & Cheng, W. (2018) Stable clustering for VANETs on highways. In: 2018 IEEE/ACM Symposium on Edge Computing (SEC) (pp. 399–403). https://doi.org/10.1109/SEC.2018.00053

  8. Cooper, C., Franklin, D., Ros, M., Safaei, F., & Abolhasan, M. (2017). A comparative survey of VANET clustering techniques. IEEE Communications Surveys Tutorials, 19(1), 657–681. https://doi.org/10.1109/COMST.2016.2611524.

    Article  Google Scholar 

  9. Department of transportation, Taipei City Government. http://www.bote.gov.taipei/ct.asp?xItem=660485&CtNode=71101&mp=117031.

  10. Fan, P., Haran, J. G., Dillenburg, J., & Nelson, P. C. (2005). Cluster-based framework in vehicular ad-hoc networks (pp. 32–42). Berlin: Springer. https://doi.org/10.1007/11561354_5.

    Book  Google Scholar 

  11. Gerla, M., & Tzu-Chieh Tsai, J. (1995). Multicluster, mobile, multimedia radio network. Wireless Networks, 1(3), 255–265. https://doi.org/10.1007/BF01200845.

    Article  Google Scholar 

  12. Ide, C., Kurtz, F., & Wietfeld, C. (2013) Cluster-based vehicular data collection for efficient LTE machine-type communication. In: 2013 IEEE 78th Vehicular Technology Conference (VTC Fall) (pp. 1–5). https://doi.org/10.1109/VTCFall.2013.6692136

  13. IEEE standard for information technology—Local and metropolitan area networks—Specific requirements—Part 11: Wireless LAN medium access control (Mac) and physical layer (Phy) specifications amendment 6: Wireless access in vehicular environments. IEEE Std 802.11p-2010 (Amendment to IEEE Std 802.11-2007 as amended by IEEE Std 802.11k-2008, IEEE Std 802.11r-2008, IEEE Std 802.11y-2008, IEEE Std 802.11n-2009, and IEEE Std 802.11w-2009) (pp. 1–51) (2010). https://doi.org/10.1109/IEEESTD.2010.5514475.

  14. Megiddo, N. (1983). Linear-time algorithms for linear programming in \(r^3\) and related problems. SIAM Journal on Computing, 12(4), 759–776. https://doi.org/10.1137/0212052.

    Article  MathSciNet  MATH  Google Scholar 

  15. Mohammad, S. A., & Michele, C. W. (2010) Using traffic flow for cluster formation in vehicular ad-hoc networks. In 2010 IEEE 35th Conference on Local Computer Networks (LCN) (pp. 631–636). https://doi.org/10.1109/LCN.2010.5735785

  16. Ns3. http://www.nsnam.org/.

  17. Parekh, A.K. (1994) Selecting routers in ad-hoc wireless networks. In Proceedings SBT/IEEE international telecommunications symposium (pp. 420–424).

  18. Remy, G., Senouci, S. M., Jan, F., & Gourhant, Y. (2011) Lte4v2x: Lte for a centralized VANET organization. In 2011 IEEE Global Telecommunications Conference—GLOBECOM 2011 (pp. 1–6). https://doi.org/10.1109/GLOCOM.2011.6133884

  19. Ren, M., Khoukhi, L., Labiod, H., Zhang, J., & Vque, V. (2017). A mobility-based scheme for dynamic clustering in vehicular ad-hoc networks (VANETs). Vehicular Communications, 9, 233–241. https://doi.org/10.1016/j.vehcom.2016.12.003.

    Article  Google Scholar 

  20. Rmy, G., Senouci, S. M., Jan, F., & Gourhant, Y. (2011). Lte4v2x—Impact of high mobility in highway scenarios. In Global information infrastructure symposium—GIIS 2011 (pp. 1–7). https://doi.org/10.1109/GIIS.2011.6026706.

  21. Rmy, G., Senouci, S. M., Jan, F., & Gourhant, Y. (2012) Lte4v2x—Collection, dissemination and multi-hop forwarding. In: 2012 IEEE International Conference on Communications (ICC) (pp. 120–125). https://doi.org/10.1109/ICC.2012.6364412

  22. Shaghaghi, E., Jalooli, A., Aboki, R., Marefat, A., & Noor, R. (2014) Intelligent traffic signal control for urban central using vehicular ad-hoc network. In 2014 IEEE Asia Pacific conference on wireless and mobile (pp. 281–286). https://doi.org/10.1109/APWiMob.2014.6920297

  23. Shi, C., Zhou, Y., Li, W., Li, H., Lu, N., Cheng, N., & Yang, T. (2017) A centralized clustering based hybrid vehicular networking architecture for safety data delivery. In GLOBECOM 2017–2017 IEEE global communications conference (pp. 1–6). https://doi.org/10.1109/GLOCOM.2017.8254086.

  24. Sumo (simulation of urban mobility). http://www.dlr.de/ts/en/desktopdefault.aspx/tabid-9883/16931_read-41000/.

  25. Syfullah, M., & Lim, J. M. Y. (2017) Data broadcasting on cloud-VANET for IEEE 802.11p and LTE hybrid VANET architectures. In 2017 3rd International Conference on computational intelligence communication technology (CICT) (pp. 1–6). https://doi.org/10.1109/CIACT.2017.7977321.

  26. Sylvester, J. J. (1857). A question in the geometry of situation. Quarterly Journal of Pure and Applied Mathematics, 1, 79.

  27. Taipei City Government open data platform. http://data.taipei.

  28. Talib, M. S., Hassan, A., Hussin, B., Abas, Z., Talib, Z. S., & Rasoul, Z. S. (2018). A novel stable clustering approach based on Gaussian distribution and relative velocity in VANETs. International Journal of Advanced Computer Science and Applications, 9(4), 216–220. https://doi.org/10.14569/IJACSA.2018.090434.

    Article  Google Scholar 

  29. The bus speed limitation, the Taipei City department of transportation. http://www.dot.gov.taipei/ct.asp?xitem=921278&CtNode=12308&mp=117001.

  30. Tielert, T., Jiang, D., Chen, Q., Delgrossi, L., & Hartenstein, H. (2011) Design methodology and evaluation of rate adaptation based congestion control for vehicle safety communications. In: 2011 IEEE vehicular networking conference (VNC) (pp. 116–123). https://doi.org/10.1109/VNC.2011.6117132.

  31. Toor, Y., Muhlethaler, P., & Laouiti, A. (2008). Vehicle ad hoc networks: Applications and related technical issues. IEEE Communications Surveys Tutorials, 10(3), 74–88. https://doi.org/10.1109/COMST.2008.4625806.

    Article  Google Scholar 

  32. Ucar, S., Ergen, S. C., & Ozkasap, O. (2013) VMASC: Vehicular multi-hop algorithm for stable clustering in vehicular ad hoc networks. In 2013 IEEE Wireless Communications and Networking Conference (WCNC) (pp. 2381–2386). https://doi.org/10.1109/WCNC.2013.6554933.

  33. Ucar, S., Ergen, S. C., & Ozkasap, O. (2016). Multihop-cluster-based IEEE 802.11p and LTE hybrid architecture for VANET safety message dissemination. IEEE Transactions on Vehicular Technology, 65(4), 2621–2636. https://doi.org/10.1109/TVT.2015.2421277.

    Article  Google Scholar 

  34. Wahab, O. A., Otrok, H., & Mourad, A. (2013). VANET QoS-OLSR: Qos-based clustering protocol for vehicular ad hoc networks. Computer Communications, 36(13), 1422–1435. https://doi.org/10.1016/j.comcom.2013.07.003.

    Article  Google Scholar 

  35. Wisitpongphan, N., Tonguz, O. K., Parikh, J. S., Mudalige, P., Bai, F., & Sadekar, V. (2007). Broadcast storm mitigation techniques in vehicular ad hoc networks. IEEE Wireless Communications, 14(6), 84–94. https://doi.org/10.1109/MWC.2007.4407231.

    Article  Google Scholar 

  36. Zhang, D., Ge, H., Zhang, T., Cui, Y., Liu, X., & Mao, G. (2019). New multi-hop clustering algorithm for vehicular ad hoc networks. IEEE Transactions on Intelligent Transportation Systems, 20(4), 1517–1530. https://doi.org/10.1109/TITS.2018.2853165.

    Article  Google Scholar 

  37. Zhang, Z., Boukerche, A., & Pazzi, R. (2011) A novel multi-hop clustering scheme for vehicular ad-hoc networks. In Proceedings of the 9th ACM international symposium on mobility management and wireless access, MobiWac’11 (pp. 19–26). ACM, New York, NY, USA. https://doi.org/10.1145/2069131.2069135.

  38. Zhioua, G., Labiod, H., Tabbane, N., & Tabbane, S. (2012) A multi-metric QoS-balancing scheme for gateway selection in a clustered hybrid VANET network. In 2012 IEEE 8th international conference on wireless and mobile computing, networking and communications (WiMob) (pp. 150–156). https://doi.org/10.1109/WiMOB.2012.6379068.

  39. Zhioua, G., Tabbane, N., Labiod, H., & Tabbane, S. (2015). A fuzzy multi-metric QoS-balancing gateway selection algorithm in a clustered VANET to LTE advanced hybrid cellular network. IEEE Transactions on Vehicular Technology, 64(2), 804–817. https://doi.org/10.1109/TVT.2014.2323693.

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported in part by the Ministry of Science and Technology Taiwan (MOST) under grant MOST 107-2221-E-005-024-, MOST 107-2218-E-005-021-, and MOST 107-2221-E-146-003-.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruei-Yu Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tseng, HW., Wu, RY. & Lo, CW. A stable clustering algorithm using the traffic regularity of buses in urban VANET scenarios. Wireless Netw 26, 2665–2679 (2020). https://doi.org/10.1007/s11276-019-02019-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-019-02019-1

Keywords

Navigation