Skip to main content
Log in

On the performance of wireless ad hoc networks using bandwidth partitioning

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

We consider an hoc network where nodes are assumed to be distributed uniformly in space, according to a 2-D Poisson point process (PPP), and packets arrive at each transmitter according to a 1-D temporal PPP. The system bandwidth is divided into multiple subbands, and each transmitter selects one subband to transmit over. The channel access is governed by ALOHA or carrier sensing multiple access (CSMA) MAC protocols, in their various incarnations. The main system objective is correct reception of packets, and thus the analysis is performed in terms of outage probability, which is defined as the probability that the transmission rate required for correct reception of a packet exceeds the channel capacity, and in terms of throughput, that is the amount of information correctly received at the receivers. The performance of these protocols is derived both in the absence and presence of fading, and used to compare the different MAC protocols. The optimal number of subbands maximizing the throughput is obtained analytically for ALOHA and through simulations for CSMA, illustrating how the ’right’ number of subbands can improve the performance, compared to a random number of subbands. Furthermore, in the case of CSMA, sensing across all subbands is introduced and shown to provide additional performance gain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. The subscript b denotes that this rate threshold is used for the backoff decision making.

References

  1. Kaynia, M., Øien, G. E., Jindal, N., & Gesbert, D. (2008). Comparative performance evaluation of MAC protocols in ad hoc networks with bandwidth partitioning. In Proceedings of the IEEE international symposium on personal, indoor and mobile radio communications (PIMRC) (pp. 1–6).

  2. Kaynia, M., Jindal, N., & Øien, G. E. (2009). Impact of fading on the performance of ALOHA and CSMA. In Proceedings of the IEEE international workshop on signal processing advances for wireless communications (SPAWC), (pp. 394–398).

  3. Kaynia, M., Jindal, N., & Øien, G. E. (2011). Improving the performance of wireless ad hoc networks through MAC layer design. IEEE Transactions on Wireless Communications, 10(1), 240–252.

    Article  Google Scholar 

  4. Gupta, P., & Kumar, P. R. (2000). The capacity of wireless networks. IEEE Transactions on Information Theory, 46(2), 388–404.

    Article  MathSciNet  Google Scholar 

  5. Fonseca, B. J. B. (2007). A distributed procedure for carrier sensing threshold adaptation in CSMA-based mobile ad hoc networks. In Proceedigs of the vehicular technology conference (VTC), (pp. 66–70).

  6. Ferrari, G., & Tonguz, O. (2003). MAC protocols and transport capacity in ad hoc wireless networks: Aloha versus PR-CSMA. Proceedings of the IEEE Military Communications Conference, 2, 1113–1318.

    Google Scholar 

  7. Xie, L.-L., & Kumar, P. R. (2006). On the path-loss attenuation regime for positive cost and linear scaling of transport capacity in wireless networks. IEEE Transactions on Information Theory, 52, 2313–2328.

    Article  MathSciNet  Google Scholar 

  8. Baccelli, F., Singh, C. (2013). Adaptive spatial ALOHA, fairness and stochastic geometry. In International symposium on modeling optimization in mobile, ad hoc wireless networks (WiOpt), 2013 (pp. 7–14).

  9. Bourgeois, T., & Shimamoto, S. (2013). Stochastic analysis of multi-slot ALOHA in poisson networks. IEEE International Symposium on Personal Indoor and Mobile Radio Communications (PIMRC), 2013, 2082–2088.

    Google Scholar 

  10. Fu, Liqun, Liew, S. C., & Huang, J. (2013). Effective carrier sensing in CSMA networks under cumulative interference. IEEE Transactions on Mobile Computing, 12(4), 748–760.

    Article  Google Scholar 

  11. Galluccio, L., Morabito, G., & Palazzo, S. (2013). TC-Aloha: A novel access scheme for wireless networks with transmit-only nodes. IEEE Transactions on Wireless Communications, 12(8), 3696–3709.

    Article  Google Scholar 

  12. Arun, I. B., & Venkatesh, T. G. (2013). Order statistics based analysis of pure ALOHA in channels with multipacket reception. IEEE Communications Letters, 17(10), 2012–2015.

    Article  Google Scholar 

  13. Kleinrock, L., & Tobagi, F. A. (1975). Packet switching in radio channels: Part I– Carrier sense multiple-access modes and their throughput-delay characteristics. IEEE Transactions on Communications, 23, 1400–1416.

    Article  Google Scholar 

  14. Dai, L. (2013). Toward a coherent theory of CSMA and Aloha. IEEE Transactions on Wireless Communications, 12(7), 3428–3444.

    Article  Google Scholar 

  15. Alfano, G., Garetto, M., & Leonardi, E. (2011). New insights into the stochastic geometry analysis of dense CSMA networks. Proceedings IEEE INFOCOM, 2011, 2642–2650.

    Google Scholar 

  16. Buratti, C., & Verdone, R. (2017). End-to-end throughput of ad hoc multi-hop networks in a poisson field of interferers. IEEE/ACM Transactions on Networking, 25(5), 3189–3202.

    Article  Google Scholar 

  17. Alfano, G., Garetto, M., & Leonardi, E. (2014). New directions into the stochastic geometry analysis of dense CSMA networks. IEEE Transactions on Mobile Computing, 13(2), 324–336.

    Article  Google Scholar 

  18. Kim, Y., Baccelli, F., & de Veciana, G. (2011). Spatial reuse and fairness of mobile ad-hoc networks with channel-aware CSMA protocols. In 2011 international symposium on, modeling and optimization in mobile, ad hoc and wireless networks (WiOpt) (pp. 360–365).

  19. Ganti, R. K., Andrews, J. G., & Haenggi, M. (2011). High-sir transmission capacity of wireless networks with general fading and node distribution. IEEE Transactions on Information Theory, 57(5), 3100–3116.

    Article  MathSciNet  Google Scholar 

  20. ElSawy, H., & Hossain, E. (2012). Modeling random CSMA wireless networks in general fading environments. IEEE International Conference on Communications (ICC), 2012, 5457–5461.

    Google Scholar 

  21. Jafarian, J., & Hamdi, K. (2013). A new approach to analyse asynchronous CSMA wireless networks based on hidden node models. IEEE Vehicular Technology Conference (VTC Fall), 2013, 1–5.

    Google Scholar 

  22. Martelli, F., Buratti, C., & Verdone, R. (2014). Modeling query-based wireless csma networks through stochastic geometry. IEEE Transactions on Vehicular Technology, 63(6), 2876–2885.

    Article  Google Scholar 

  23. Rappaport, T. (1996). Wireless communications: Principles & practice. New York: Prentice Hall.

    MATH  Google Scholar 

  24. Andrews, J. G., Ghosh, A., & Muhamed, R. (2007). Fundamentals of WiMAX. New Yrok: Prentice Hall.

    Google Scholar 

  25. Pursley, M., & Royster, T. (2007). Resource consumption in dynamic spectrum access networks: Applications and Shannon limits. In Proceeedings of the workshop on information theory and its applications.

  26. Yeung, K. L., & Nanda, S. (1996). Channel management in microcell/macrocell cellular radio systems. IEEE Transactions on Vehicular Technology, 45(4), 601–612.

    Article  Google Scholar 

  27. Sikora, M., Laneman, J. N., Haenggi, M., Costello, D. J., & Fuja, T. (2006). Bandwidth- and power-efficient routing in linear wireless networks. IEEE Transactions on Information Theory, 52, 2624–2633.

    Article  MathSciNet  Google Scholar 

  28. Kyasanur, P., Jungmin, S., Chereddi, C., & Vaidya, N. (2006). Multichannel mesh networks: Challenges and protocols. IEEE Wireless Communications, 13(2), 30–36.

    Article  Google Scholar 

  29. Yuan, Y., Bahl, P., Chandra, R., Moscibroda, T., Narlanka, S., & Wu, Y. (2007). Allocating dynamic time-spectrum blocks in cognitive radio networks. In Proceedings of the ACM MobiHoc.

  30. Jindal, N., Andrews, J. G., & Weber, S. (2008). Bandwidth partitioning in decentralized wireless networks. IEEE Transactions on Wireless Communications, 7(12), 5408–5419.

    Article  Google Scholar 

  31. Stefanatos, S., & Alexiou, A. (2014). Access point density and bandwidth partitioning in ultra dense wireless networks. IEEE Transactions on Communications, 62(9), 3376–3384.

    Article  Google Scholar 

  32. Huang, Po-Kai, & Lin, Xiaojun. (2015). Achieving optimal throughput utility and low delay with CSMA-like algorithms: A virtual multichannel approach. IEEE/ACM Transactions on Networking, 23(2), 505–518.

    Article  Google Scholar 

  33. ElSawy, H., Hossain, E., & Camorlinga, S. (2013). Multi-channel design for random CSMA wireless networks: A stochastic geometry approach. IEEE International Conference on Communications (ICC), 2013, 1656–1660.

    Google Scholar 

  34. Carlson, B. (1986).Communication systems: An introduction to signals and noise in electrical communication, vol. 1. New York: McGraw-Hill electrical and electronic engineering series.

  35. Cover, T. M., & Thomas, J. A. (2006). Elements of Information Theory (Wiley Series in Telecommunications and Signal Processing). New Yrok: Wiley-Interscience.

    Google Scholar 

  36. Hasan, A., & Andrews, J. G. (2005). The guard zone in wireless ad hoc networks. IEEE Transactions on Wireless Communications, 6(3), 897–906.

    Article  Google Scholar 

  37. Weber, S. P., Yang, X., Andrews, J. G., & de Veciana, G. (2005). Transmission capacity of wireless ad hoc networks with outage constraints. IEEE Transactions on Information Theory, 51(12), 4091–4102.

    Article  MathSciNet  Google Scholar 

  38. Zhu, J., Guo, X., Yang, L., & Conner, W. (2004). Leveraging spatial reuse in 802.11 mesh networks with enhanced physical carrier sensing. In Proceedings of the IEEE international conference on communications (ICC) (pp. 4004–4011).

  39. Mordachev, V. & Loyka, S. (2008). On node density - outage probability tradeoff in wireless networks. In 2008 IEEE international symposium on information theory (pp. 191–195).

  40. IEEE Std 802.11a. (1999). IEEE Standard for Telecommunications and Information Exchange Between Systems–LAN/MAN Specific Requirements–Part 11: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications: High Speed Physical Layer in the 5 GHz band (pp. 1–102).

  41. Zhong, X., Mei, S., Wang, Y., & Wang, J. (2004). Synchronization in TDMA ad hoc network. In IEEE 60th vehicular technology conference, 2004. VTC2004-Fall. 2004 (vol. 7, pp. 5011–5014).

  42. Verdone, Roberto, Dardari, Davide, Mazzini, Gianluca, & Conti, Andrea. (2008). Wireless sensor and actuator networks: Technologies, analysis and design. Orlando, FL: Academic Press Elsevier, Inc.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariam Kaynia.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This paper is an extension of the Conference papers [1,2,3] and related differences are underlined in the Introduction.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 478 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaynia, M., Buratti, C. & Verdone, R. On the performance of wireless ad hoc networks using bandwidth partitioning. Wireless Netw 25, 4215–4229 (2019). https://doi.org/10.1007/s11276-019-02085-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-019-02085-5

Keywords

Navigation