Skip to main content

Advertisement

Log in

Adaptive regressive holt–winters workload prediction and firefly optimized lottery scheduling for load balancing in cloud

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Scheduling is a considerable problem in cloud to increase the quality of service provisioning with higher resource efficiency. The conventional task scheduling algorithms designed for balancing load in a cloud environment. But, minimizing the Service level agreement (SLA) violation, resource wastage and the energy consumption during the task scheduling process was not solved effectively. In order to resolve these limitations, a new virtual machine (VM) consolidation technique called Nature-inspired Meta-heuristic Threshold based firefly optimized lottery scheduling (NMT-FOLS) Technique is proposed. Initially, user requests are transmitted to the cloud server (CS). Next, NMT-FOLS Technique utilizes Adaptive Regressive Holt–Winters Workload Predictor to discover the workload state as normal or timely or bursty. Using the workload predictor result, NMT-FOLS Technique exploits task scheduler to allocate user requested tasks to optimal VMs. NMT-FOLS Technique applies multi-objective firefly optimization based task scheduling algorithm in normal workload state and multi-objective firefly optimized lottery scheduling algorithm in timely and bursty workload situations. At last, the selected scheduling algorithm in NMT-FOLS Technique assigns the user requested task to best VMs in CS to perform the demanded services. Hence, NMT-FOLS Technique gets better task scheduling performance to balance normal, timely and bursty workloads in CS with lesser time. NMT-FOLS Technique decreases the SLA violation in cloud through scheduling of user tasks to optimal VM. NMT-FOLS performs an experimental process using metrics such as SLA violation, task scheduling efficiency (TSE), makespan, energy utilization and memory usage with number of user-requested tasks over the considered Amazon dataset. From the experimental result, the NMT-FOLS technique improves scheduling efficiency up to 94.6% and reduces the SLA violations and energy utilization from different test cases on an average to 78%, and 63% compared to state-of-the-art works.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Prassanna, J., Jadhav, P. A., & Neelanarayanan V. (2016). Towards an analysis of load balancing algorithms to enhance efficient management of cloud data centres. In Proceedings of the 3rd international symposium on big data and cloud computing challenges (2016′), smart innovation, systems and technologies (Vol. 49). Springer, Cham.

  2. Panda, S. K., & Jana, P. K. (2019). Load balanced task scheduling for cloud computing: A probabilistic approach. Knowledge and Information Systems. https://doi.org/10.1007/s10115-019-01327-4.

    Article  Google Scholar 

  3. Zhang, P., & Zhou, M. (2018). Dynamic cloud task scheduling based on a two-stage strategy. IEEE Transactions on Automation Science and Engineering, 15(2), 772–783. https://doi.org/10.1109/tase.2017.2693688.

    Article  Google Scholar 

  4. Hussain, A., Aleem, M., Khan, A., Iqbal, M. A., & Islam, M. A. (2018). RALBA: A computation-aware load balancing scheduler for cloud computing. Cluster Computing, 21(3), 1667–1680. https://doi.org/10.1007/s10586-018-2414-6.

    Article  Google Scholar 

  5. Ali, H. M., & Lee, Daniel C. (2015). Virtual machine placement using biogeography-based optimization. Future Generation Computing Systems, 54, 95–122.

    Google Scholar 

  6. Calheiros, R. N., Masoumi, E., Ranjan, R., & Buyya, R. (2015). Workload prediction using ARIMA model and its impact on cloud applications’ QoS. IEEE Transactions on Cloud Computing, 3(4), 449–458. https://doi.org/10.1109/tcc.2014.2350475.

    Article  Google Scholar 

  7. Mazumdar, S., & Pranzo, M. (2017). Power efficient server consolidation for cloud data center. Future Generation Computing Systems, 70, 4–16. https://doi.org/10.1016/j.future.2016.12.022.

    Article  Google Scholar 

  8. Vazquez, C., Krishnan, R., & John, E. (2015). Time series forecasting of cloud data center workloads for dynamic resource provisioning. Journal of Wireless Mobile Networks, Ubiquitous Computing, and Dependable Applications, 6(3), 87–110.

    Google Scholar 

  9. Huang, Z., & Tsang, D. H. K. (2016). M-Convex VM consolidation: Towards a better VM workload consolidation. IEEE Transactions on Cloud Computing, 4(4), 415–427. https://doi.org/10.1109/TCC.2014.2369423

    Article  MathSciNet  Google Scholar 

  10. Chunlin, L., Min, Z., & Youlong, L. (2017). Efficient load-balancing aware cloud resource scheduling for mobile user. The Computer Journal, 60(6), 925–939. https://doi.org/10.1093/comjnl/bxx037.

    Article  Google Scholar 

  11. Priya, V., Sathiya Kumar, C., & Kannan, R. (2019). Resource scheduling algorithm with load balancing for cloud service provisioning. Applied Soft Computing, 76, 416–424. https://doi.org/10.1016/j.asoc.2018.12.021.

    Article  Google Scholar 

  12. Zhao, J., Yang, K., Wei, X., Ding, Y., Hu, L., & Xu, G. (2016). A heuristic clustering-based task deployment approach for load balancing using Bayes theorem in cloud environment. IEEE Transactions on Parallel & Distributed Systems, 27(2), 305–316. https://doi.org/10.1109/tpds.2015.2402655.

    Article  Google Scholar 

  13. Adhikari, M., Nandy, S., & Amgoth, T. (2019). Meta heuristic-based task deployment mechanism for load balancing in IaaS cloud. The Journal of Network and Computer Applications, 128, 64–77. https://doi.org/10.1016/j.jnca.2018.12.010.

    Article  Google Scholar 

  14. Aruna, M., Bhanu, D., & Karthik, S. (2017). An improved load balanced metaheuristic scheduling in cloud. Cluster Computing. https://doi.org/10.1007/s10586-017-1213-9.

    Article  Google Scholar 

  15. Kaur, A., & Kaur, B. (2019). Load balancing optimization based on hybrid Heuristic-Metaheuristic techniques in cloud environment. Journal of King Saud University Computer and Information. https://doi.org/10.1016/j.jksuci.2019.02.010.

    Article  Google Scholar 

  16. Cho, K.-M., Tsai, P.-W., Tsai, C.-W., & Yang, C.-S. (2014). A hybrid meta-heuristic algorithm for VM scheduling with load balancing in cloud computing. Neural Computing and Applications, 26(6), 1297–1309. https://doi.org/10.1007/s00521-014-1804-9.

    Article  Google Scholar 

  17. Kumar, M., & Sharma, S. C. (2017). Dynamic load balancing algorithm for balancing the workload among virtual machine in cloud computing. Procedia Computer Science, 115, 322–329. https://doi.org/10.1016/j.procs.2017.09.141.

    Article  Google Scholar 

  18. Praveen, S. P., Rao, K. T., & Janakiramaiah, B. (2017). Effective allocation of resources and task scheduling in cloud environment using social group optimization. Arabian Journal for Science and Engineering, 43(8), 4265–4272. https://doi.org/10.1007/s13369-017-2926-z.

    Article  Google Scholar 

  19. Razzaghzadeh, S., Navin, A. H., Rahmani, A. M., & Hosseinzadeh, M. (2017). Probabilistic modeling to achieve load balancing in expert clouds. Ad Hoc Networks, 59, 12–23. https://doi.org/10.1016/j.adhoc.2017.01.001.

    Article  Google Scholar 

  20. Li, F., Liao, T. W., & Zhang, L. (2019). Two-level multi-task scheduling in a cloud manufacturing envi-ronment. Robotics and Computer-Integrated Manufacturing, 56, 127–139. https://doi.org/10.1016/j.rcim.2018.09.002.

    Article  Google Scholar 

  21. Tang, F., Yang, L. T., Tang, C., Li, J., & Guo, M. (2018). A dynamical and load-balanced flow scheduling approach for big data centers in clouds. IEEE Transactions on Cloud Computing, 6(4), 915–928. https://doi.org/10.1109/tcc.2016.2543722.

    Article  Google Scholar 

  22. Manasrah, A. M., & Ba Ali, H. (2018). Workflow scheduling using hybrid GA-PSO algorithm in cloud computing. Wireless Communications and Mobile Computing. https://doi.org/10.1155/2018/1934784.

    Article  Google Scholar 

  23. Gopu, A., & Venkataraman, N. (2018). Optimal VM placement in distributed cloud environment using MOEA/D. Soft Computing. https://doi.org/10.1007/s00500-018-03686-6.

    Article  Google Scholar 

  24. Madni, S. H. H., Latiff, M. S. A., Ali, J., & Abdulhamid, S. M. (2018). Multi-objective-oriented cuckoo search optimization-based resource scheduling algorithm for clouds. Arabian Journal for Science and Engineering, 44(4), 3585–3602. https://doi.org/10.1007/s13369-018-3602-7.

    Article  Google Scholar 

  25. Madni, S. H. H., Abd Latiff, M. S., Abdullahi, M., Abdulhamid, S. M., & Usman, M. J. (2017). Perfor-mance comparison of heuristic algorithms for task scheduling in IaaS cloud computing environment. PLoS ONE, 12(5), e0176321. https://doi.org/10.1371/journal.pone.0176321.

    Article  Google Scholar 

  26. Adhikari, M., & Amgoth, T. (2018). Heuristic-based load-balancing algorithm for IaaS cloud. Future Generation Computing Systems, 81, 156–165. https://doi.org/10.1016/j.future.2017.10.035.

    Article  Google Scholar 

  27. Xie, X., et al. (2015). Detection of service level agreement (SLA) violation in memory management in virtual machines. In 2015 24th International conference on computer communication and networks (ICCCN). https://doi.org/10.1109/icccn.2015.7288394.

  28. Emeakaroha, V. C., Netto, M. A., Calheiros, R. N., Brandic, I., Buyya, R., & Rose, C. A. (2012). Towards autonomic detection of SLA violations in Cloud infrastructures. Future Generation Computer Systems, 28(7), 1017–1029. https://doi.org/10.1016/j.future.2011.08.018.

    Article  Google Scholar 

  29. Friedman, J. H. (1991). Multivariate adaptive regression splines. The Annals of Statistics., 19(1), 1–67. https://doi.org/10.1214/aos/1176347963.

    Article  MathSciNet  MATH  Google Scholar 

  30. Amazon EC2 Dataset: http://www.ec2instances.info/. Accessed 30 Oct 2018.

  31. Prassanna, J., & Venkataraman, N. (2019). Threshold based multi-objective memetic optimized round robin scheduling for resource efficient load balancing in cloud. Mobile Networks and Applications. https://doi.org/10.1007/s11036-019-01259-x.

    Article  Google Scholar 

  32. Yang, Q., Zhou, Y., Yu, Y., Yuan, J., Xing, X., & Du, S. (2015). Multi-step-ahead host load prediction using autoencoder and echo state networks in cloud computing. The Journal of Supercomputing, 71(8), 3037–3053. https://doi.org/10.1007/s11227-015-1426-8.

    Article  Google Scholar 

  33. Singh, P., Gupta, P., & Jyoti, K. (2018). TASM: technocrat ARIMA and SVR model for workload prediction of web applications in cloud. Cluster Comput, 1(2), 56–63.

    Google Scholar 

  34. Leena Sri, R., & Balaji, N. (2018). An empirical model of adaptive cloud resource provisioning with speculation. Soft Computing, 12(4), 1–12.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Prassanna.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prassanna, J., Venkataraman, N. Adaptive regressive holt–winters workload prediction and firefly optimized lottery scheduling for load balancing in cloud. Wireless Netw 27, 5597–5615 (2021). https://doi.org/10.1007/s11276-019-02090-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-019-02090-8

Keywords

Navigation