Skip to main content
Log in

A novel scheduling algorithm to improve SUPT for multi-queue multi-server system

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

This study improves the Quality of Experience (QoE) of the multi-queue multi-server queueing system by solving the scheduling problem. The QoE is evaluated by a novel indicator named system user-perceived throughput (SUPT). According to the property of the traffic, the stochastic optimization problem for SUPT can be transformed into utility maximization under the constraint of queue stability. We then propose a drift-plus-penalty scheduling algorithm named max modified weight (MMW) to balance delay and utility. A Nike function for queue length replaces the queue length as the weight. Furthermore, we prove the stability of the queues based on the Foster–Lyapunov theorem and analyze the delay boundary under the proposed MMW scheduling algorithm. Finally, compared with several classical scheduling policies, the effectiveness of the MMW is verified by evaluating the average system throughput, SUPT, the average system backlog, and user-perceived throughput of the queues in three different scenarios. The simulation results show MMW policy achieves more efficient trade-off between SUPT and system delay, and is capable of maintaining system stability as max weight regardless of the system load.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

3GPP:

3rd generation partnership project

LTE:

Long term evolution

QoE:

Quality of Experience

UPT:

User-perceived throughput

SUPT:

System user-perceived throughput

OFDM:

Orthogonal frequency division multiplexing

CSI:

Channel state information

QSI:

Queue state information

MDP:

Markov decision process

PP:

Poisson process

IPP:

Interrupted Poisson process

MQMS:

Multi-queue multi-server

RLC:

Radio link control

MAC:

Media access control

HTTP:

Hyper text transfer protocol

SIPT:

Scheduled internet protocol throughput

References

  1. 3GPP TS 36.314. (2018). Evolved Universal Terrestrial Radio Access (E-UTRA); Layer 2—Measurements (Release 15). Technical specification group radio access network.

  2. Andrews, M., & Zhang, L. (2011). Scheduling algorithms for multicarrier wireless data systems. IEEE/ACM Transactions on Networking, 19(2), 447–455.

    Article  Google Scholar 

  3. Yang, H., Ren, F., Lin, C., & Zhang, J. (2010). Frequency-domain packet scheduling for 3GPP LTE uplink. In IEEE INFOCOM, pp. 1–9.

  4. Jun, D., Jiang, C., Wang Jian, Y., Shui, H. Z., & Yong, R. (2017). Resource allocation in space multi-access systems. IEEE Transactions on Aerospace and Electronic Systems, 53(2), 598–618.

    Article  Google Scholar 

  5. Chaudhuri, S., Baig, I., & Das, D. (2015). Utility based QoS aware uplink scheduler scheme for LTE small cell network. In IEEE international conference on communications, pp. 3149–3154.

  6. Dechene Dan, J., & Shami, A. (2013). Energy efficient QoS constrained scheduler for SC-FDMA uplink. Physical Communication, 8(8), 81–90.

    Article  Google Scholar 

  7. Neely, M. J. (2006). Energy optimal control for time-varying wireless networks. IEEE Transactions on Information Theory, 52(7), 2915–2934.

    Article  MathSciNet  MATH  Google Scholar 

  8. Manikandan, C., Bhashyam, S., & Sundaresan, R. (2009). Cross-layer scheduling with infrequent channel and queue measurements. IEEE Transactions on Wireless Communications, 8(12), 5737–5742.

    Article  Google Scholar 

  9. Kittipiyakul, S., & Javidi, T. (2009). Delay-optimal server allocation in multiqueue multiserver systems with time-varying connectivities. IEEE Transactions on Information Theory, 55(5), 2319–2333.

    Article  MathSciNet  MATH  Google Scholar 

  10. Halabian, H., Lambadaris, I., & Lung, C. H. (2014). Explicit characterization of stability region for stationary multi-queue multi-server systems. IEEE Transactions on Automatic Control, 59(2), 355–370.

    Article  MathSciNet  MATH  Google Scholar 

  11. Capozzi, F., Piro, G., Grieco, L. A., Boggia, G., & Camarda, P. (2013). Downlink packet scheduling in LTE cellular networks: Key design issues and a survey. IEEE Communications Surveys Tutorials, 15(2), 678–700.

    Article  Google Scholar 

  12. Andrews, M. (2004). Instability of the proportional fair scheduling algorithm for HDR. IEEE Transactions on Wireless Communications, 3(5), 1422–1426.

    Article  Google Scholar 

  13. Tassiulas, L., & Ephremides, A. (1992). Stability properties of constrained queueing systems and scheduling policies for maximum throughput in multihop radio networks. IEEE Transactions on Automatic Control, 37(12), 1936–1948.

    Article  MathSciNet  MATH  Google Scholar 

  14. Marques, A. G., Lopez-Ramos, L. M., Giannakis, G. B., Ramos, J., & Caamano, A. J. (2012). Optimal cross-layer resource allocation in cellular networks using channel and queue-state information. IEEE Transactions on Vehicular Technology, 61(6), 2789–2807.

    Article  Google Scholar 

  15. Chen, J., & Lau, V. K. N. (2013). Delay analysis of max-weight queue algorithm for time-varying wirelessadhoc networks—Control theoretical approach. IEEE Transactions on Signal Processing, 61(1), 99–108.

    Article  MathSciNet  MATH  Google Scholar 

  16. Neely, M. J., & Supittayapornpong, S. (2013). Dynamic Markov decision policies for delay constrained wireless scheduling. IEEE Transactions on Automatic Control, 58(8), 1948–1961.

    Article  MathSciNet  MATH  Google Scholar 

  17. Neely, M. J. (2009). Delay analysis for maximal scheduling with flow control in wireless networks with bursty traffic. IEEE Transactions on Networking, 17(4), 1146–1159.

    Article  Google Scholar 

  18. Neely, M. (2010). Stochastic network optimization with application to communication and queueing systems. Synthesis Lectures on Communication Networks, 3(1), 211.

    Article  MATH  Google Scholar 

  19. Zhou, Y., Kumar, R., & Tang, S. (2018). Incentive-based distributed scheduling of electric vehicle charging under uncertainty. IEEE Transactions on Power Systems, 34(1), 3–11.

    Article  Google Scholar 

  20. Shi, W., Li, N., Chu, C.-C., & Gadh, R. (2017). Real-time energy management in microgrids. IEEE Transactions on Smart Grid, 8(1), 228–238.

    Article  Google Scholar 

  21. Li, Y., Sheng, M., Wang, C.-X., Wang, X., Shi, Y., & Li, J. (2015). Throughput-delay tradeoff in interference-free wireless networks with guaranteed energy efficiency. IEEE Transactions on Wireless Communications, 14(3), 1608–1621.

    Article  Google Scholar 

  22. Peng, M., Yu, Y., Xiang, H., & Poor, H. V. (2016). Energy-efficient resource allocation optimization for multimedia heterogeneous cloud radio access networks. IEEE Transactions on Multimedia, 18(5), 879–892.

    Article  Google Scholar 

  23. Jun, D., Jiang, C., Yi, Q., Zhu, H., & Yong, R. (2016). Resource allocation with video traffic prediction in cloud-based space systems. IEEE Transactions on Multimedia, 18(5), 1–1.

    Article  Google Scholar 

  24. Brueck, S., Zhao, L., Giese, J., & Amin, M. A. (2010). Centralized scheduling for joint transmission coordinated multi-point in LTE-Advanced. In 2010 International ITG workshop on smart antennas (WSA). IEEE, pp. 177–184.

  25. Ishiguro, A. G. (2014). Scheduling and resource allocation for mobile broadband networks. PhD thesis, The University of Texas at Austin.

  26. Eryilmaz, A., & Srikant, R. (2012). Asymptotically tight steady-state queue length bounds implied by drift conditions. Queueing Systems, 72(3–4), 311–359.

    Article  MathSciNet  MATH  Google Scholar 

  27. Seo, J.-B., & Jin, H. (2017). Stability region of p-persistent csma systems. IEEE Communications Letters, 21(3), 652–655.

    Article  Google Scholar 

  28. Jian, W., Bao, Y., Miao, G., Zhou, S., & Niu, Z. (2016). Base-station sleeping control and power matching for energy-delay tradeoffs with bursty traffic. IEEE Transactions on Vehicular Technology, 65(5), 3657–3675.

    Article  Google Scholar 

  29. Georgiadis, L., Neely, M. J., & Tassiulas, L. (2006). Resource allocation and cross-layer control in wireless networks. Foundations Trends in Networking, 1(1), 1–144.

    Article  MATH  Google Scholar 

  30. Neely, M. J., Modiano, E., & Li, C. P. (2008). Fairness and optimal stochastic control for heterogeneous networks. IEEE/ACM Transactions on Networking, 16(2), 396–409.

    Article  Google Scholar 

  31. Ross, S. M. (2014). Introduction to probability models. Cambridge: Academic Press.

    MATH  Google Scholar 

  32. Al-Dweik, A., Kalil, M., & Shami, A. (2015). Qos-aware power-efficient scheduler for LTE uplink. IEEE Transactions on Mobile Computing, 14(8), 1672–1685.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China under Grants 61703326 and 61673308, in part by the Fundamental Research Funds for the Central Universities under Grant JB181307, and in part by the Innovation Fund of Xidian University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinpeng Fang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Fang, X. & Chen, W. A novel scheduling algorithm to improve SUPT for multi-queue multi-server system. Wireless Netw 25, 5173–5185 (2019). https://doi.org/10.1007/s11276-019-02124-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-019-02124-1

Keywords

Navigation