Skip to main content
Log in

Secrecy performance analysis of CIOD–OFDM systems over wireless fading channels

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Space–time block codes from coordinate interleaved orthogonal designs (CIODs) have been attracted attention due to their capability for full-diversity and full-rate transmission along with their needs for only a single-symbol decoding. When the number of transmit antennas is more than two, the code rate of orthogonal space–time block coding (OSTBC) is mostly lower than one, whereas, the CIOD offers rate-one transmission for two, three and four transmit antennas, yielding a higher transmission rate compared to that of the OSTBC. In addition, physical layer (PHY) security performance of CIOD scheme is an important issue but has not been evaluated yet. In this paper, the PHY security performance of a combined coordinate interleaved orthogonal design and orthogonal frequency-division multiplexing (CIOD–OFDM) is evaluated and studied. Closed-form expressions for two performance evaluation metrics of PHY security such as the average secrecy capacity and the secrecy outage probability are derived and presented for the considered CIOD–OFDM system and compared with the secrecy performance of the OSTBC–OFDM system. Mathematical expressions are derived for the general case, where multiple antennas are used at the transmitter and receiver sides. It is shown that the CIOD–OFDM system can provide a better security performance than the OSTBC–OFDM system. Furthermore, union bound expressions for the symbol error rate performance of CIOD–OFDM system is derived. Then, an efficient method for enhancing the PHY security of the signal transmission in CIOD–OFDM is presented. The Monte-Carlo simulation results are also presented for verifying the results obtained from mathematical and theoretical expressions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Alamouti, S. M. (1998). A simple transmit diversity technique for wireless communications. IEEE Journal on Selected Areas in Communications, 16(8), 1451–1458.

    Article  Google Scholar 

  2. Tarokh, V., Seshadri, N., & Calderbank, A. R. (1998). Space–time codes for high data rate wireless communication: Performance criterion and code construction. IEEE Transactions on Information Theory, 44(2), 744–765.

    Article  MathSciNet  Google Scholar 

  3. Jafarkhani, H. (2010). Space–time coding: Theory and practice (1st ed.). New York, NY: Cambridge University Press.

    MATH  Google Scholar 

  4. Myung, J., Lee, H., & Kang, J. (2013). Performance analysis of a dual-hop relay with STBC-CIOD over Rayleigh fading channels. IEEE Transactions on Vehicular Technology, 62(1), 439–444.

    Article  Google Scholar 

  5. Dào, D. N., & Tellambura, C. (2008). Decoding, performance analysis, and optimal signal designs for coordinate interleaved orthogonal designs. IEEE Transactions on Wireless Communications, 7(1), 48–53.

    Article  Google Scholar 

  6. Torabi, M., Aissa, S., & Soleymani, M. R. (2007). On the BER performance of space–frequency block coded OFDM systems in fading MIMO channels. IEEE Transactions on Wireless Communications, 6(4), 1366–1373.

    Article  Google Scholar 

  7. Chang, T., Ma, W., Huang, C., & Chi, C. (2012). Noncoherent OSTBC-OFDM for MIMO and cooperative communications: Perfect channel identifiability and achievable diversity order. IEEE Transactions on Signal Processing, 60(9), 4849–4863.

    Article  MathSciNet  Google Scholar 

  8. Yang, Y., Chang, T., Ma, W., Ge, J., Chi, C., & Ching, P. C. (2012). Noncoherent bit-interleaved coded OSTBC-OFDM with maximum spatial-frequency diversity. IEEE Transactions on Wireless Communications, 11(9), 3335–3347.

    Article  Google Scholar 

  9. Wyner, A. D. (1975). The wire-tap channel. The Bell System Technical Journal, 54(8), 1355–1387.

    Article  MathSciNet  Google Scholar 

  10. Bloch, M., & Joao, B. (2010). Physical-layer security. New York: Cambridge University Press.

    MATH  Google Scholar 

  11. Hyadi, A., Rezki, Z., & Alouini, M.-S. (2016). An overview of physical layer security in wireless communication systems with CSIT uncertainty. IEEE Access, 4, 6121–6132.

    Article  Google Scholar 

  12. Obeed, M., & Mesbah, W. (2019). Efficient algorithms for physical layer security in one-way relay systems. Wireless Networks, 25(3), 1327–1339.

    Article  Google Scholar 

  13. Gopala, P. K., Lai, L., & El Gamal, H. (2008). On the secrecy capacity of fading channels. IEEE Transactions on Information Theory, 54(10), 4687–4698.

    Article  MathSciNet  Google Scholar 

  14. Tuan, V. P., & Kong, H. Y. (2019). Secure communication in untrusted relay selection networks with wireless energy harvesting. Wireless Networks, 25(4), 1431–1442.

    Article  Google Scholar 

  15. Sarma, S., & Kuri, J. (2018). SNR based secure communication via untrusted amplify-and-forward relay nodes using artificial noise. Wireless Networks, 24(1), 127–138.

    Article  Google Scholar 

  16. Zhang, X., Guo, D., An, K., Ma, W., & Guo, K. (2018). Secure transmission and power allocation in multiuser distributed massive MIMO systems. Wireless Networks, 24(4), 1–14.

    Google Scholar 

  17. Renna, F., Laurenti, N., & Poor, H. V. (2012). Physical-layer secrecy for OFDM transmissions over fading channels. IEEE Transactions on Information Forensics and Security, 7(4), 1354–1367.

    Article  Google Scholar 

  18. Zhang, J., Marshall, A., Woods, R., & Duong, T. Q. (2016). Efficient key generation by exploiting randomness from channel responses of individual OFDM subcarriers. IEEE Transactions on Wireless Communications, 64(6), 2578–2588.

    Article  Google Scholar 

  19. Yusuf M., & Arslan H. (2016). Controlled inter-carrier interference for physical layer security in OFDM systems. In 2016 IEEE 84th Vehicular Technology Conference (VTC-Fall) (pp 1–5).

  20. Hamamreh, J. M., Basar, E., & Arslan, H. (2017). OFDM-subcarrier index selection for enhancing security and reliability of 5G URLLC services. IEEE Access, 5, 25863–25875.

    Article  Google Scholar 

  21. Singh, Chauhan S., Verma, P., Mathur, M., Agarwal, M., & Gupta, T. (2016). Physical layer security of MIMO STBC over Rayleigh fading channels in the presence of channel estimation error. Optik, 127, 7625–7630.

    Article  Google Scholar 

  22. Yang, M., Zhang, B., Huang, Y., Yang, N., da Costa, D. B., & Guo, D. (2017). Secrecy enhancement of multiuser MISO networks using OSTBC and artificial noise. IEEE Transactions on Vehicular Technology, 66(12), 11394–11398.

    Article  Google Scholar 

  23. Lee, H., Andrews, J. G., Heath, R. W., & Powers, E. J. (2009). The performance of space–time block codes from coordinate interleaved orthogonal designs over Nakagami-m fading channels. IEEE Transactions on Communications, 57(3), 653–664.

    Article  Google Scholar 

  24. Khan, M. Z. A., & Rajan, B. S. (2006). Single-symbol maximum likelihood decodable linear STBCs. IEEE Transactions on Information Theory, 52(5), 2062–2091.

    Article  MathSciNet  Google Scholar 

  25. Leemis, L. M., & McQueston, J. T. (2008). Univariate distribution relationships. American Statistician, 62(1), 45–53.

    Article  MathSciNet  Google Scholar 

  26. Karas, D. S., Boulogeorgos, A. A. A., & Karagiannidis, G. K. (2016). Physical layer security with uncertainty on the location of the eavesdropper. IEEE Wireless Communications Letters, 5(5), 540–543.

    Article  Google Scholar 

  27. Chen, X., Chen, J., Zhang, H., Zhang, Y., & Yuen, C. (2016). On secrecy performance of multiantenna-jammer-aided secure communications with imperfect CSI. IEEE Transactions on Vehicular Technology, 65(10), 8014–8024.

    Article  Google Scholar 

  28. Yan, S., Yang, N., Malaney, R., & Yuan, J. (2014). Transmit antenna selection with Alamouti coding and power allocation in MIMO wiretap channels. IEEE Transactions on Wireless Communications, 13(3), 1656–1667.

    Article  Google Scholar 

  29. Brante, G., Alves, H., Souza, R. D., & Latva-Aho, M. (2015). Secrecy analysis of transmit antenna selection cooperative schemes with no channel state information at the transmitter. IEEE Transactions on Communications, 63(4), 1330–1342.

    Article  Google Scholar 

  30. Torabi M., Aissa S., & Soleymani M. R. (2006). MIMO-OFDM systems with imperfect channel information: Capacity, outage and BER performance. In IEEE international conference on communications, ICC’06 (Vol. 12, pp. 5342–5347).

  31. Dào D. N., & Tellambura C. (2006). On space–time block codes from coordinate interleaved orthogonal designs. In Proceedings-IEEE Military Communications Conference MILCOM 2006 (pp. 1–4).

  32. Lee, H. (2013). A unified closed-form formula for the SPERs of full-diversity rate-1 single-complex-symbol decodable STBCs in Rayleigh fading channels. IEEE Communications Letters, 17(8), 1576–1579.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Torabi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baghaei Pouri, A., Torabi, M. Secrecy performance analysis of CIOD–OFDM systems over wireless fading channels. Wireless Netw 27, 1627–1640 (2021). https://doi.org/10.1007/s11276-019-02141-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-019-02141-0

Keywords

Navigation