Skip to main content

Advertisement

Log in

Dynamic modulation scaling enabled multi-hop topology control for time critical wireless sensor networks

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

The previous work on connection driven topology control has shown that it has significant potential to reduce energy consumption of Wireless Sensor Networks (WSNs). Dynamic Modulation Scaling (DMS) which is a technique that manages transmission power levels in order to change the number of bits encoded per symbol has a direct impact on connection driven topology control. In this paper we investigate the transmission scheduling of multi-hop real-time WSNs equipped with DMS enabled radio chips while taking the effect of DMS on topology control into account. To our best knowledge, this is the first paper that addresses this issue. The current work on DMS enabled WSN tend to rely on theoretical DMS models to predict network performance metrics. However, there is little, if any, work that is based upon empirically verified network performance outcomes using DMS especially on its effect on connection driven topology control. This paper fills this gap by using GNU Radio and Software Defined Radio hardware to show how to emulate DMS in low power wireless systems and measure the impact of varying Signal-to-Noise levels, distance and elevation on throughput and delivery rates for different DMS control strategies. Next, we present the Mixed Integer Nonlinear Optimization Problem of minimizing energy consumption of DMS enabled connection driven topology control on real-time WSNs. Lastly, we present two polynomial time heuristics and compare their performance against the optimal solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35

Similar content being viewed by others

References

  1. Adler, M., Sitaraman, R. K., Rosenberg, A. L., & Unger, W. (1998). Scheduling time-constrained communication in linear networks. In: Proceedings of the tenth annual ACM symposium on parallel algorithms and architectures (pp. 269–278). ACM.

  2. Anastasi, G., Conti, M., Di Francesco, M., & Passarella, A. (2009). Energy conservation in wireless sensor networks: A survey. Ad Hoc Networks, 7(3), 537–568.

    Article  Google Scholar 

  3. Bandara, K. D. S., Melaragno, A., Wijesekera, D., & Costa, P. (2017). A case study of cognitive radio networks: Secure spectrum management for positive train control operations. In: Spectrum access and management for cognitive radio networks (pp. 121–152). Springer.

  4. Bandari, M., Simon, R., & Aydin, H. (2016). On minimizing expected energy usage of embedded wireless systems with probabilistic workloads. Sustainable Computing: Informatics and Systems, 11, 50–62.

    Google Scholar 

  5. Barbehenn, M. (1998). A note on the complexity of Dijkstra’s algorithm for graphs with weighted vertices. IEEE Transactions on Computers, 47(2), 263.

    Article  MathSciNet  Google Scholar 

  6. Bloessl, B., Segata, M., Sommer, C., & Dressler, F. (2013). Towards an open source IEEE 802.11 p stack: A full SDR-based transceiver in GNU radio. In: 2013 IEEE vehicular networking conference (VNC), (pp. 143–149). IEEE.

  7. Cerpa, A., & Estrin, D. (2002). Ascent: Adaptive self-configuring sensor network topologies. ACM SIGCOMM Computer Communication Review, 32(1), 62–62.

    Article  Google Scholar 

  8. Chen, B., Jamieson, K., Balakrishnan, H., & Morris, R. (2002). Span: An energy-efficient coordination algorithm for topology maintenance in ad hoc wireless networks. Wireless Networks, 8(5), 481–494.

    Article  Google Scholar 

  9. Cionca, V., Newe, T., & Dadarlat, V. (2008). TDMA protocol requirements for wireless sensor networks. In: Proceedings of second IEEE international conference on sensor technologies and applications. https://doi.org/10.1109/SENSORCOMM.2008.69.

  10. Cui, S., Goldsmith, A. J., & Bahai, A. (2005). Energy-constrained modulation optimization. IEEE Transactions on Wireless Communications, 4(5), 2349–2360.

    Article  Google Scholar 

  11. Dousse, O., Mannersalo, P., & Thiran, P. (2004). Latency of wireless sensor networks with uncoordinated power saving mechanisms. In: Proceedings of the 5th ACM international symposium on Mobile ad hoc networking and computing (pp. 109–120). ACM.

  12. Edbauer, F. (1992). Bit error rate of binary and quaternary DPSK signals with multiple differential feedback detection. IEEE Transactions on Communications, 40(3), 457–460.

    Article  Google Scholar 

  13. Fateh, B., & Govindarasu, M. (2013). Energy minimization by exploiting data redundancy in real-time wireless sensor networks. Ad Hoc Networks, 11(6), 1715–1731.

    Article  Google Scholar 

  14. Fateh, B., & Govindarasu, M. (2015). Joint scheduling of tasks and messages for energy minimization in interference-aware real-time sensor networks. IEEE Transactions on Mobile Computing, 14(1), 86–98.

    Article  Google Scholar 

  15. Galloway, B., & Hancke, G. (2013). Introduction to industrial control networks. IEEE Communications Surveys Tutorials, 15(2), 860–880. https://doi.org/10.1109/SURV.2012.071812.00124.

    Article  Google Scholar 

  16. Gumusalan, A., Simon, R., & Aydin, H. (2016). Adaptive transmission scheduling for energy-aware real-time wireless communication. In: Proceedings of the 2016 international conference on embedded wireless systems and networks, EWSN’16 (pp. 1–12). USA: Junction Publishing. http://dl.acm.org/citation.cfm?id=2893711.2893713.

  17. Gumusalan, A., Simon, R., & Aydin, H. (2018). Flexible real-time transmission scheduling for wireless networks with non-deterministic workloads. Ad Hoc Networks, 73, 65–79.

    Article  Google Scholar 

  18. Gungor, V. C., & Hancke, G. P. (2009). Industrial wireless sensor networks: Challenges, design principles, and technical approaches. IEEE Transactions on Industrial Electronics, 56(10), 4258–4265.

    Article  Google Scholar 

  19. Ho, P., & Fung, D. (1991). Error performance of multiple symbol differential detection of PSK signals transmitted over correlated Rayleigh fading channels. In: IEEE international conference on communications, 1991. ICC’91, conference record (pp. 568–574). IEEE.

  20. https://forums.ni.com/t5/USRP-Software-Radio/How-to-set-the-trasmit-power-of-USRP/td-p/2202190

  21. IEEE. https://standards.ieee.org/findstds/standard/802.15.4e-2012.html. Retrieved May 22, 2017.

  22. IEEE. https://ieeexplore.ieee.org/document/7460875.

  23. ILOG, I. (2018). CPLEX optimizer. http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer.

  24. Instruments, T. Cc2420: 2.4 GHz IEEE 802.15.4/zigbee-ready RF transceiver. http://www.ti.com/product/CC2420.

  25. Instruments, T. Sub 1 GHz radios. http://www.ti.com/wireless-connectivity/simplelink-solutions/sub-1-ghz/products.html. Retrieved March 5, 2018.

  26. Khader, O., & Willig, A. (2013). An energy consumption analysis of the wireless HART TDMA protocol. Computer Communications, 36(7), 804–816.

    Article  Google Scholar 

  27. Kong, Z., & Yeh, E. M. (2007). Distributed energy management algorithm for large-scale wireless sensor networks. In: Proceedings of the 8th ACM international symposium on mobile ad hoc networking and computing (pp. 209–218). ACM.

  28. Lennvall, T., Svensson, S., & Hekland, F. (2008). A comparison of wirelesshart and zigbee for industrial applications. In: Proceedings of IEEE international workshop on factory communication systems.

  29. Park, M. (2015). IEEE 802.11 ah: sub-1-GHz license-exempt operation for the internet of things. IEEE Communications Magazine, 53(9), 145–151.

    Article  Google Scholar 

  30. Raghunathan, V., Schurgers, C., Park, S., & Srivastava, M. B. (2002). Energy-aware wireless microsensor networks. IEEE Signal Processing Magazine, 19(2), 40–50.

    Article  Google Scholar 

  31. Research, E. Ettus usrp b210. https://www.ettus.com/product/details/UB210-KIT. Retrieved February 2, 2018.

  32. Schurgers, C., Raghunathan, V., & Srivastava, M. B. (2003). Power management for energy-aware communication systems. ACM Transactions on Embedded Computing Systems, 2(3), 431–447.

    Article  Google Scholar 

  33. Song, J., Han, S., Mok, A. K., Chen, D., Lucas, M., & Nixon, M. (2008). Wirelesshart: Applying wireless technology in real-time industrial process control. In: Proceedings of IEEE real-time and embedded technology and applications symposium.

  34. Wang, H., & Fapojuwo, A. O. (2017). A survey of enabling technologies of low power and long range machine-to-machine communications. IEEE Communications Surveys & Tutorials, 19(4), 2621–2639.

    Article  Google Scholar 

  35. Xiong, X., Zheng, K., Xu, R., Xiang, W., & Chatzimisios, P. (2015). Low power wide area machine-to-machine networks: Key techniques and prototype. IEEE Communications Magazine, 53(9), 64–71.

    Article  Google Scholar 

  36. Yu, Y., Prasanna, V. K., & Krishnamachari, B. (2006). Energy minimization for real-time data gathering in wireless sensor networks. IEEE Transactions on Wireless Communications, 5(11), 3087–3096.

    Article  Google Scholar 

  37. Zhang, B., Simon, R., & Aydin, H. (2013). Harvesting-aware energy management for time-critical wireless sensor networks with joint voltage and modulation scaling. IEEE Transactions on Industrial Informatics, 9(1), 514–526.

    Article  Google Scholar 

  38. Zhou, G., He, T., Stankovic, J., Abdelzaher, T., et al. (2005). RID: Radio interference detection in wireless sensor networks. In: Proceedings of 24th IEEE annual joint conference of the IEEE computer and communications societies (Vol. 2, pp. 891–901).

Download references

Acknowledgements

The authors would like to thank Dr. Duminda Wijesekera from Computer Science Department, George Mason University for giving us access to Radar and Radio Engineering Lab’s Faraday cages. Experiments presented in Sect. 7 were run on ARGO, a research computing cluster provided by the Office of Research Computing at George Mason University, VA. (URL:http://orc.gmu.edu).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arda Gumusalan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gumusalan, A., Simon, R. & Aydin, H. Dynamic modulation scaling enabled multi-hop topology control for time critical wireless sensor networks. Wireless Netw 26, 1203–1226 (2020). https://doi.org/10.1007/s11276-019-02146-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-019-02146-9

Navigation