Skip to main content

Advertisement

Log in

Energy efficiency resource allocation for D2D communication network based on relay selection

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

In order to solve the problem of spectrum resource shortage and energy consumption, we put forward a new model that combines with D2D communication and energy harvesting technology: energy harvesting-aided D2D communication network under the cognitive radio (EHA-CRD), where the D2D users harvest energy from the base station and the D2D source communicate with D2D destination by D2D relays. Our goals are to investigate the maximization energy efficiency (EE) of the network by joint time allocation and relay selection while taking into the constraints of the signal-to-noise ratio of D2D and the rates of the Cellular users. During this process, the energy collection time and communication time are randomly allocated. The maximization problem of EE can be divided into two sub-problems: (1) relay selection problem; (2) time optimization problem. For the first sub-problem, we propose a weighted sum maximum algorithm to select the best relay. For the last sub-problem, the EE maximization problem is non-convex problem with time. Thus, by using fractional programming theory, we transform it into a standard convex optimization problem, and we propose the optimization iterative algorithm to solve the convex optimization problem for obtaining the optimal solution. And, the simulation results show that the proposed relay selection algorithm and time optimization algorithm are significantly improved compared with the existing algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Lin, J., Yu, W., Zhang, N., Yang, X., Zhang, H., & Zhao, W. (2017). A survey on internet of things: architecture, enabling technologies, security and privacy, and applications. IEEE Internet of Things Journal, 4(5), 1125–1142.

    Article  Google Scholar 

  2. Zhufang, K., Gang, L., Gongqiang, L., & Xiaoheng, D. (2018). Energy efficient resource allocation algorithm in energy harvesting-based d2d heterogeneous networks. IEEE Internet of Things Journal, 6(1), 557–567.

    Google Scholar 

  3. Jameel, F., Hamid, Z., Jabeen, F., Zeadally, S., & Javed, M. A. (2018). A survey of device-to-device communications: Research issues and challenges. IEEE Communications Surveys & Tutorials, 20(3), 2133–2168.

    Article  Google Scholar 

  4. Sergio, C., & Velio, T. (2018). Qos-aware admission control and resource allocation for d2d communications underlaying cellular networks. IEEE Transactions on Wireless Communications, 17(8), 5256–5269.

    Article  Google Scholar 

  5. Ansari, R. I., Chrysostomou, C., Hassan, S. A., Guizani, M., Mumtaz, S., Rodriguez, J., et al. (2018). 5g d2d networks: Techniques, challenges, and future prospects. IEEE Systems Journal, 12(4), 3970–3984.

    Article  Google Scholar 

  6. Jiang, D., Wang, W., Shi, L., & Song, H. (2018). A compressive sensing-based approach to end-to-end network traffic reconstruction. IEEE Transactions on Network Science and Engineering, 5(3), 1–12.

    Google Scholar 

  7. Eyupoglu, C., & Aydin, M. A. (2015). Energy efficiency in backbone networks. Procedia—Social and Behavioral Sciences, 195, 1966–1970.

    Article  Google Scholar 

  8. Lu, X., Wang, P., Niyato, D., Kim, D. I., & Han, Z. (2015). Wireless networks with RF energy harvesting: A contemporary survey. IEEE Communications Surveys & Tutorials, 17(2), 757–789.

    Article  Google Scholar 

  9. Dingde, J., Liuwei, H., Ya, L., & Zhihan, L. (2018). Fine-granularity inference and estimations to network traffic for sdn. PLoS ONE, 13(5), 1–23.

    Google Scholar 

  10. Wang, F., Jiang, D., & Qi, S. (2019). An adaptive routing algorithm for integrated information networks. China Communications, 7(1), 196–207.

    Google Scholar 

  11. Chen, L., Jiang, D., Song, H., Wang, P., Bao, R., & Zhang, K. (2018). A lightweight end-side user experience data collection system for quality evaluation of multimedia communications. IEEE Access, 6(2018), 15408–15419.

    Article  Google Scholar 

  12. Sun, M., Jiang, D., Song, H., & Liu, Y. (2017). Statistical resolution limit analysis of two closely spaced signal sources using rao test. IEEE Access, 5, 22013–22022.

    Article  Google Scholar 

  13. Gu, Y., Chen, H., Li, Y., Liang, Y. C., & Vucetic, B. (2018). Distributed multi-relay selection in accumulate-then-forward energy harvesting relay networks. IEEE Transactions on Green Communications and Networking, 2(1), 74–86.

    Article  Google Scholar 

  14. Feng, G., Qin, X. Z., & Jia, Z. H. (2019). Research on energy efficiency of wireless powered communication network in cognitive radio environment. Computer Engineering, 45(3), 142–147.

    Google Scholar 

  15. Huo, L., & Jiang, D. (2019). Stackelberg game-based energy-efficient resource allocation for 5g cellular networks. Telecommunication Systems, 23(4), 1–11.

    Google Scholar 

  16. Huo, L., Jiang, D., & Lv, Z. (2018). Soft frequency reuse-based optimization algorithm for energy efficiency of multi-cell networks. Computers & Electrical Engineering, 66(2), 316–331.

    Article  Google Scholar 

  17. Jiang, D., Zhang, P., Lv, Z., & Song, H. (2016). Energy-efficient multi-constraint routing algorithm with load balancing for smart city applications. IEEE Internet of Things Journal, 3(6), 1437–1447.

    Article  Google Scholar 

  18. Zungeru, A. M., Ang, L. M., Prabaharan, S. R. S., & Seng, K. P. (2012). Radio frequency energy harvesting and management for wireless sensor networks. In Green mobile devices and networks: Energy optimization and scavenging techniques (pp. 341–368). CRC Press.

  19. Chu, Z., Nguyen, H. X., & Caire, G. (2018). Game theory-based resource allocation for secure wpcn multiantenna multicasting systems. IEEE Transactions on Information Forensics and Security, 13(4), 926–939.

    Article  Google Scholar 

  20. Xie, L., Xu, J., & Zhang, R. (2018). Throughput maximization for uav-enabled wireless powered communication networks. IEEE Internet of Things Journal, 6(2), 1690–1703.

    Article  Google Scholar 

  21. Jiang, D., Wang, Y., & Lv, Z. (2019). Big data analysis-based network behavior insight of cellular networks for industry 4.0 applications. IEEE Transactions on Industrial Informatics. https://doi.org/10.1109/tii.2019.2930226.

    Article  Google Scholar 

  22. Jiang, D., Huo, L., Lv, Z., Song, H., & Qin, W. (2018). A joint multi-criteria utility-based network selection approach for vehicle-to-infrastructure networking. IEEE Transactions on Intelligent Transportation Systems, 19(10), 3305–3319.

    Article  Google Scholar 

  23. Jiang, D., Huo, L., & Song, H. (2018). Rethinking behaviors and activities of base stations in mobile cellular networks based on big data analysis. IEEE Transactions on Network Science and Engineering, 1(1), 1–12.

    MathSciNet  Google Scholar 

  24. Wang, F., Jiang, D., & Wen, H. (2019). Adaboost-based security level classification of mobile intelligent terminals. The Journal of Supercomputing, 75, 1–19.

    Article  Google Scholar 

  25. Huo, L., Jiang, D., Zhu, X., Wang, Y., & Singh, S. (2019). A SDN-based fine-grained measurement and modeling approach to vehicular communication network traffic. International Journal of Communication Systems. https://doi.org/10.1002/dac.4092.

    Article  Google Scholar 

  26. Jiang, D., Li, W., & Lv, H. (2016). An energy-efficient cooperative multicast routing in multi-hop wireless networks for smart medical applications. Neurocomputing, 220, 160–169.

    Article  Google Scholar 

  27. Zhu, J., Song, Y., Jiang, D., & Song, H. (2017). A new deep-q-learning-based transmission scheduling mechanism for the cognitive internet of things. IEEE Internet of Things Journal, 5(4), 2375–2385.

    Article  Google Scholar 

  28. Wang, R., Cheng, D., Zhang, G., Lu, Y., Yang, J., Zhao, L., et al. (2017). Joint relay selection and resource allocation in cooperative device-to-device communications. AEU—International Journal of Electronics and Communications, 73, 50–58.

    Article  Google Scholar 

  29. Wang, R., Liu, J., Zhang, G., Huang, S., & Yuan, M. (2017). Energy efficient power allocation for relay-aided D2D communications in 5G networks. Chin. Commun., 14, 54–64.

    Article  Google Scholar 

  30. Rahman, M., Lee, Y. D., & Koo, I. (2018). Energy-efficient power allocation and relay selection schemes for relay-assisted d2d communications in 5g wireless networks. Sensors, 18(9), 2865.

    Article  Google Scholar 

  31. Gupta, S., Zhang, R., & Hanzo, L. (2017). Energy harvesting aided device-to-device communication underlaying the cellular downlink. IEEE Access, 5(99), 7405–7413.

    Article  Google Scholar 

  32. Gupta, S., Zhang, R., & Hanzo, L. (2018). Energy harvesting aided device-to-device communication in the over-sailing heterogeneous two-tier downlink. IEEE Access, 6(99), 245–261.

    Article  Google Scholar 

  33. Yang, H. H., Lee, J., & Quek, T. Q. S. (2016). Heterogeneous cellular network with energy harvesting-based d2d communication. IEEE Transactions on Wireless Communications, 15(2), 1406–1419.

    Article  Google Scholar 

  34. Zhang, Y., Zhang, J., Sun, Y., & Ng, D. W. K. (2017). Energy-efficient transmission for wireless powered D2D communication networks. In IEEE ICC Wireless Communications Symposium, pp. 1-7.

  35. Saleem, U., Jangsher, S., Qureshi, H. K., & Hassan, S. A. (2018). Joint subcarrier and power allocation in energy harvesting-aided d2d communication. IEEE Transactions on Industrial Informatics, 14(6), 2608–2617.

    Article  Google Scholar 

  36. Zheng, M., Xu, C., Yu, H., & Liang, W. (2016). Harvesting-throughput tradeoff for rf-powered underlay cognitive radio networks. Electronics Letters, 52(10), 881–883.

    Article  Google Scholar 

  37. Wu, Q., Tao, M., Ng, D. W. K., Chen, W., & Schober, R. (2015). Energy-efficient resource allocation for wireless powered communication networks. IEEE Transactions on Wireless Communications, 15(3), 2312–2327.

    Article  Google Scholar 

  38. Dinkelbach, W. (1967). On nonlinear fractional programming. Management Science, 13(7), 492–498.

    Article  MathSciNet  Google Scholar 

  39. Boyd, S., & Vandenberghe, L. (2004). Convex optimization. Cambridge: Cambridge University Press.

    Book  Google Scholar 

Download references

Acknowledgments

This study was supported by Natural science foundation of Xinjiang Uygur Autonomous Region under Grant No. 2018D01C047 and No. 2019D01C058, and National Science Foundation of China under Grant 61471311.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xizhong Qin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

Theorem 1

The perspective function of concave function is still concave function.

Proof

We define \(f\left( x \right) = \log \left( {1 + x} \right),x > 0.\)

Obviously, \(f\left( x \right)\) is a concave function in its domain.

And the perspective function of \(f\left( x \right)\) can be expressed as

$$g\left( {x,y} \right) = yf\left( {\frac{x}{y}} \right), dom g = \left\{ {\left( {x,y} \right)\left| {\frac{x}{y} \in dom f,y} \right\rangle 0} \right\}$$

Because the perspective operation is convex preserving, and \(f\left( x \right)\) is concave function. So \(g\left( {x,y} \right)\) is also concave function.

Appendix 2

Theorem 2

If the function of \(f_{1} \left( x \right) {\text{and }}f_{2} \left( x \right)\) is concave function.

Thus, \(f\left( x \right) = min\left\{ {f_{1} \left( x \right),f_{2} \left( x \right)} \right\}\) is concave function when \(dom f = dom f_{1} \cap dom f_{2}\).

Proof: for any \(0 \le\uptheta \le 1\). and \(x,y \in dom f\), we have

$$\begin{aligned} & f\left( {\uptheta\,x + \left( {1 -\uptheta} \right)y} \right) \\ & = \,min\left\{ {f_{1} \left( {\uptheta\,x + \left( {1 -\uptheta} \right)y} \right),f_{2} \left( {\uptheta\,x + \left( {1 -\uptheta} \right)y} \right)} \right\} \\ & \ge \,min\left\{ {\uptheta\,f_{1} (x) + \left( {1 -\uptheta} \right)f_{1} (y),\uptheta\,f_{2} (x) + \left( {1 -\uptheta} \right)f_{2} (y)} \right\} \\ & \ge\uptheta\,min\left\{ {f_{1} (x),f_{2} \left( x \right)\} + \left( {1 -\uptheta} \right)min\{ f_{1} (y),f_{2} \left( y \right)} \right\} \\ & =\uptheta\,f\left( x \right) + \left( {1 -\uptheta} \right)f\left( y \right) \\ \end{aligned}$$

Appendix 3

Theorem 3

The nonnegative weighted sum of a concave function is still a concave function.

Proof

If \(f\left( x \right)\) is a convex function and α \(\ge 0\), thus, α \(f\left( x \right)\) is also a convex function if \(f_{1} \left( x \right)\) and \(f_{2} \left( x \right)\) are convex function, thus, \(f_{1} \left( x \right) + f_{2} \left( x \right)\) is also a convex function.□

By combining the operation of non-negative expansion and sum, it can be seen that the set of convex functions is itself a convex cone: the non-negative weighted sum of convex functions is still a convex function, that is:

$$f\left( x \right) = w_{1} f_{1} \left( x \right) + w_{2} f_{2} \left( x \right) + \cdots + w_{m} f_{m} \left( x \right)$$

f(x) is still a convex function.

Similarly, the nonnegative weighted sum of a concave function is still a concave function

Appendix 4

Theorem 4

\(f\left( {x,y} \right) = {\text{xlog}}2\left( {1 + \frac{x}{x + y}} \right)\) belongs to convex function when \(x \in \left( {0,1} \right),y \in \left( {0,1} \right)\)

Proof

Taking the second derivative about \(x,y\) in \(f\left( {x,y} \right)\), we have\(\nabla_{x}^{2} f\left( {x,y} \right) > 0;\nabla_{y}^{2} f\left( {x,y} \right) > 0;\) when \(x \in \left( {0,1} \right),y \in \left( {0,1} \right)\)Thus,\(f\left( {x,y} \right)\) is a convex function when \(x \in \left( {0,1} \right),y \in \left( {0,1} \right)\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, G., Qin, X., Jia, Z. et al. Energy efficiency resource allocation for D2D communication network based on relay selection. Wireless Netw 27, 3689–3699 (2021). https://doi.org/10.1007/s11276-019-02240-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-019-02240-y

Keywords

Navigation