Skip to main content
Log in

Cognitive radio paradigm and recent trends of antenna systems in the UWB 3.1–10.6 GHz

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

This article mainly focuses on the concept of cognitive radio paradigm in the ultra-wideband 3.1–10.6 GHz and recent trends of various antenna systems required for these applications. This paper also presents the working principle of cognitive radio model and the importance of UWB 3.1–10.6 GHz technology for various wireless communication applications. In the cognitive radio model, ultra-wideband antennas are employed for free channels identification and reconfigurable narrow band antennas for communication. Based on the utilization of different UWB and narrow band antennas, the antennas are divided into four distinct categories. The first category covers individual UWB and narrow band antennas. The second category includes reconfigurable UWB/NB antennas. The third category consists of dual-port integrated UWB and NB antennas. The fourth category comprise of multi-port integrated UWB and NB antennas. So, this paper reports all the four categories of ultra-wideband and frequency reconfigurable narrow band antennas clearly. It also focuses on the recent trends in these antennas. Moreover, it discusses about the comparison study of various antennas and their characteristics. Furthermore, a discussion on hardware working principle and its implementation is presented. The hardware realization is presented using arbitrary waveform generator, real-time signal analyzer, software defined radio platforms, field programmable gate arrays and universal software radio peripheral.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Jayaweera, S., & Mosquera, C. (2009). A dynamic spectrum leasing (DSL) framework for spectrum sharing in cognitive radio networks. In Proceedings of the IEEE forty-third Asilomar Conference on signals, systems and computers (pp. 1819–1823), California: Pacific Grove.

  2. Raslan, A. R. (2013). Metamaterial antennas for cognitive radio applications. A Thesis. Submitted to the Electronics Engineering Department, American University in Cairo School of Sciences and Engineering.

  3. Al-Husseini, M., Kabalan, K., El-Hajj, A., & Christodoulou, C. (2010). Cognitive radio: UWB integration and related antenna design. In M. J. Er (Ed.), New trends in technologies: Control, management, computational intelligence and network systems. Rijeka: INTECH.

    Google Scholar 

  4. Tawk, Y., Bkassiny, M., El-Howayek, G., Jayaweera, S. K., Avery, K., & Christodoulou, C. G. (2011). Reconfigurable front-end antennas for cognitive radio applications. IET Microwaves, Antennas and Propagation,5(8), 985–992.

    Google Scholar 

  5. FCC. (2002). 1st Report and order on Ultra-Wideband Paradigm.

  6. Mitola, J. (2000). Cognitive radio an integrated agent architecture for software defined radio. A Thesis. Submitted to Royal Institute of Paradigm (KTH), Teleinformatics, Sweden.

  7. Available online: http://transition.fcc.gov/pshs/techtopics/techtopic8.html

  8. Win, M. Z., et al. (2009). History and applications of UWB. In Proceedings of the Institute of Electrical and Electronics Engineers (IEEE) (Vol. 97, No. 2).

  9. Barrett, T. W. (2000). History of ultrawideband (UWB) radar & communications: Pioneers and innovators. In Proceedings of progress in electromagnetics Symposium (pp. 1–42). Cambridge, MA.

  10. Ebrahimi, E. (2011). Wideband and reconfigurable antennas for emerging wireless networks. A Thesis. Submitted to the University of Birmingham School of Electronic, Electrical and Computer Engineering, College of Engineering and Physical Sciences.

  11. Available online: http://www.peachwire.com/index.php/Faq_quare/che-differenza-ce-tra-lnfc-e-altretecnologie-come-il-bluetooth-e-il-wi-fi/

  12. Available online: http://cdn.arstechnica.net/Gadgets/uwb_tzero_chart.png

  13. Nella, A., & Gandhi, A. S. (2018). A survey on planar antenna designs for cognitive radio applications. Wireless Personal Communications,98(1), 541–569.

    Google Scholar 

  14. Lodge, Electric telegraphy, U.S. Patent 609,154 (1898).

  15. Schantz, H. G. (2005). The art and science of ultrawideband antennas. Norwood, MA 02062: Artech House, Inc.

  16. Dubost, G., & Zisler, S. (1976). Antennas a large bande. New York: Masson.

    Google Scholar 

  17. Agrawall, N. P., Kumar, G., & Ray, K. P. (1998). Wide-band planar monopole antennas. IEEE Transactions on Antennas and Propagation,46(2), 294–295.

    Google Scholar 

  18. Al-Husseini, M., Tawk, Y., El-Hajj, A., & Kabalan, K. Y. (2009). A low-cost microstrip antenna for 3G/WLAN/WiMAX and UWB applications. In Proceedings of the IEEE international Conference on advances in computational tools for engineering applications (ACTEA’09) (pp. 68–70), Lebanon: Zouk Mosbeh.

  19. Al-husseini, M., Ramadan, A., Tawk, Y., El-Hajj, A., & Kabalan, K. Y. (2011). Design and ground plane optimization of a CPW-fed Ultra-Wideband Antenna. Turkish Journal of Electrical Engineering and Computer Science,19(2), 243–250.

    Google Scholar 

  20. Waghmare, C., & Kothari, A. (2014). Spanner shaped ultra-wideband patch antenna. In Proceedings of the IEEE students Conference on engineering and systems (SCES) (pp. 1–4), Allahabad, India.

  21. Kumar, N. A. & Gandhi, A. S. (2016). Small size planar monopole antenna for high speed UWB applications. In Proceedings of the twenty second national conference on communications (NCC) (pp. 1–5). Guwahati, Assam, India.

  22. Roshna, T. K., Deepak, U., Sajitha, V. R., & Mohanan, P. (2014). Coplanar stripline-fed compact UWB antenna. Electronics Letters,50(17), 1181–1182.

    Google Scholar 

  23. Choi, S. H., Park, J. K., Kim, S. K., & Park, J. Y. (2004). A new ultra-wideband antenna for UWB applications. Microwave and Optical Paradigm Letters,40(5), 399–401.

    Google Scholar 

  24. Liang, J. X., Chiau, C. C., Chen, X. D., & Parini, C. G. (2005). Study of a printed circular disc monopole antenna for UWB systems. IEEE Transactions on Antennas and Propagation,53(11), 3500–3504.

    Google Scholar 

  25. Ooi, B. L., Zhao, G., Leong, M. S., Chua, K. M., & Lu, A. C. W. (2005). Wideband LTCC CPW-fed two layered monopole antenna. Electronics Letters,41(16), 889–890.

    Google Scholar 

  26. Su, S., Wong, K., & Tang, C. (2004). Ultra-wideband square planar antenna for IEEE 802.16a operating in the 2–11 GHz band. Microwave and Optical Paradigm Letters,42(6), 463–466.

    Google Scholar 

  27. Evans, J. A., & Ammann, M. J. (1999). Planar trapezoidal and pentagonal monopoles with impedance bandwidth in excess of 10:1. IEEE Antennas and Propagation International Symposium (Digest),3, 1558–1561.

    Google Scholar 

  28. Suh, S. Y., Stutaman, W. L., & Davis, W. A. (2004). A new ultrawideband printed monopole antenna: The planar Inverted cone antenna (PICA). IEEE Transactions on Antennas and Propagation,52(5), 1361–1364.

    Google Scholar 

  29. Al-Husseini, M., El-Hajj, A., Kabalan, K. Y. (2008). A 1.9–13.5 low-cost microstrip antenna. In Proceedings of the IEEE international conference on wireless communications and mobile computing conference (IWCMC’08) (pp. 1023–1025), Crete, Greece.

  30. Kumar, R., & Gaikwad, S. (2013). On the design of nano-arm fractal antenna for UWB wireless applications. Journal of Microwaves, Optoelectronics and Electromagnetic Applications,12(1), 158–171.

    Google Scholar 

  31. El Hamdouni, A., Zbitou, J., Tajmouati, A., El Abdellaoui, L., Errkik, A., Tribak, A., et al. (2015). Design of a novel CPW fed fractal antenna for UWB. International Journal of Electrical, Computer, Energetic, Electronic and Communication Engineering,9(1), 100–103.

    Google Scholar 

  32. Sharma, S. K., Gupta, A., & Chaudhary, R. K. (2015). UWB ring-shaped metamaterial antenna with modified phi-shaped SRR. In Proceedings of the IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting (pp. 1966–1967). British Columbia, Canada.

  33. Zahran, S. R., Ahmed, O. H. E. S., El-Shalakany, A. T., Saleh, S., & Abdalla, M. A. (2014). Ultra wide band antenna with enhancement efficiency for high speed communications. In Proceedings of the IEEE 31st national radio science Conference (NRSC) (pp. 65–72), Cairo, Egypt.

  34. Bougoutaia, T., Khedrouche, D., & Hocini, A. (2015). Bandwidth improvement for compact microstrip patch antenna using metamaterials. In Proceedings of the 5th international science congress & exhibition APMAS (Vol. 129, No. 4, pp. 538–540). Lykia, Oludeniz.

  35. Dandime, G. M., & Kasabegoudar, V. G. (2014). A slotted circular monopole antenna for wireless applications. International Journal of Wireless Communications and Mobile Computing,2(2), 30–34.

    Google Scholar 

  36. Tripathi, S., Mohan, A., & Yadav, S. (2014). Hexagonal fractal ultra-wideband antenna using Koch geometry with bandwidth enhancement. IET Microwaves, Antennas and Propagaation,8(15), 1445–1450.

    Google Scholar 

  37. Pandey, G. K., Singh, H. S., Bharti, P. K., & Meshram, M. K. (2014). Metamaterial-based UWB antenna. Electronics Letters,50(18), 1266–1268.

    Google Scholar 

  38. Pourahmadazar, J., Ghobadi, C., & Nourinia, J. (2011). Novel modified pythagorean tree fractal monopole antennas for UWB applications. IEEE Antennas and Wireless Propagation Letters,10, 484–487.

    Google Scholar 

  39. Islam, M. M., Islam, M. T., Samsuzzaman, M., & Faruque, M. R. I. (2015). Compact metamaterial antenna for UWB Applications. Electronics Letters,51(16), 1222–1224.

    Google Scholar 

  40. Guo, L., Wang, S., Chen, X., & Parini, C. G. (2010). Study of compact antenna for UWB applications. Electronics Letters,46(2), 115–116.

    Google Scholar 

  41. Tripathi, S., Yadav, S., Vijay, V., Dixit, A., & Mohan, A. (2013). Hexagonal shaped fractal UWB antenna. In Proceedings of the IEEE applied electromagnetics conference (AEMC) (pp. 1–2). Bhubaneswar, India

  42. Tripathi, S., Yadav, S., Vijay, V., Dixit, A., & Mohan, A. (2013). A novel multi band notched octagonal shaped fractal UWB antenna. In Proceedings of the IEEE international conference on signal processing and communication (ICSC) (pp. 167–169). Noida, India.

  43. Boya Satyanarayana, D. S. N. (2014). Parametric analysis of planar circular monopole antenna for UWB communication systems. International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering 3(9).

  44. Ray, K. P. (2008). Design aspects of printed monopole antennas for ultra-wide band applications. International Journal of Antennas and Propagation 2008, Article ID: 713858.

  45. Al-Husseini, M., Ramadan, A., El-Hajj, A., Kabalan, K. Y., Tawk, Y., & Christodoulou, C. G. (2011). Design based on complementary split-ring resonators of an antenna with controllable band notches for UWB cognitive radio applications. In Proceedings of the IEEE international Symposium on antennas and propagation (APSURSI) (pp. 1120–1122). Washington, USA.

  46. Shi, R., Xu, X., Dong, J., & Luo, Q. (2014). Design and analysis of a novel dual band-notched UWB antenna. International Journal of Antennas and Propagation 2014, Article ID: 531959, PP. 1–10

  47. Abdelhalim, C., & Farid, D. (2014). A compact planar UWB antenna with triple controllable band-notched characteristics. International Journal of Antennas and Propagation 2014, Article ID: 848062, PP. 1–10

  48. Jangid, S., & Kumar, M. (2012). A novel UWB band notched rectangular patch antenna with square slot. In Proceedings of the IEEE fourth international conference on computational intelligence and communication networks (CICN) (pp. 5–9). Uttar Pradesh, India.

  49. Al-Husseini, M., Costantine, J., Christodoulou, C. G., Barbin, S. E., El-Hajj, A., & Kabalan, K. Y. (2010) A reconfigurable frequency-notched UWB Antenna with Split-ring Resonators. In Proceedings of the IEEE Asia-Pacific microwave conference (pp. 618–621). Yokohama, Japan.

  50. Jalil, Y. E., Chakrabarty, C. K., Kasi, B. (2013). A compact ultra-wideband antenna with dual band-notched design. In Proceedings of the IEEE 7th international conference on signal processing and communication systems (ICSPCS) (pp. 1–5). Gold coast, Australia.

  51. Chu, Q.-X., & Yang, Y.-Y. (2008). A compact ultra wide band antenna with 3.4/5.5 GHz dual band-notched characteristics. IEEE Transactions on Antennas and Propagation,56(12), 3637–3644.

    MathSciNet  Google Scholar 

  52. Zheng, S. H., Liu, X., & Tentzeris, M. M. (2014). Optically controlled reconfigurable band-notched UWB antenna for cognitive radio systems. Electronics Letters,50(21), 1502–1504.

    Google Scholar 

  53. Kamma, A., Reddy, G. S., Parmar, R. S., & Mukherjee, J. (2014). Reconfigurable dual-band notch UWB antenna. In Proceedings of the twentieth national conference on communications (NCC) (pp. 1–3). Kanpur, India.

  54. Badamchi, B., Nourinia, J., Ghobadi, C., & Shahmirzadi, A. V. (2014). Design of compact reconfigurable ultra-wideband slot antenna with switchable single/dual band notch functions. IET Microwaves, Antennas and Propagagation,8(8), 541–548.

    Google Scholar 

  55. Syed, A., & Aldhaheri, R. W. (2016). A very compact and low profile UWB planar antenna with WLAN band rejection. International Journal of Antennas and Propagation 2016, Article ID: 3560938.

  56. Qin, P.-Y., Weily, A. R., Guo, Y. J., Bird, T. S., & Liang, C.-H. (2010). Frequency reconfigurable quasi-yagi folded dipole antenna. IEEE Transactions on Antennas and Propagation,58(8), 2742–2747.

    Google Scholar 

  57. Ajith Kumar, M. M., Patnaik, A., & Christodoulou, C. G. (2014). Design and testing of a multifrequency antenna with a reconfigurable feed. IEEE Antennas and Wireless Propagation Letters,13, 730–733.

    Google Scholar 

  58. Kaur, P., & De Asok, S. K. (2014). Design of a novel reconfigurable fractal antenna for multi-band. International Journal of Advanced Science and Paradigm,62, 103–112.

    Google Scholar 

  59. Mansoul, A., Ghanem, F., Hamid, M. R., & Trabelsi, M. (2014). A selective frequency-reconfigurable antenna for cognitive radio applications. IEEE Antennas and Wireless Propagation Letters,13, 515–518.

    Google Scholar 

  60. Tawk, Y., Costantine, J., Barbin, S. E., & Christodoulou, C. G. (2011). Integrating laser diodes in a reconfigurable antenna system. In Proceedings of the international microwave & optoelectronics Conference (IMOC) (pp. 794–796). Natal, Brazil.

  61. Tawk, Y., Costantine, J., & Christodoulou, C. G. (2010). A frequency reconfigurable rotatable microstrip antenna design. In Proceedings of the IEEE antennas and propagation society international Symposium (APSURSI) (pp. 1–4). Toronto, Canada.

  62. Majid, H. A., Kamal, M. A., Rahim, M., Hamid, R., & Ismail, M. F. (2012). A compact frequency-reconfigurable narrowband microstrip slot antenna. IEEE Antennas and Wireless Propagation Letters,11, 616–619.

    Google Scholar 

  63. Kumar, R., & Vijay, R. (2016). A frequency agile semicircular slot antenna for cognitive radio system. International Journal of Antennas and Propagation 2016, Article ID: 2648248.

  64. Tawk, Y., & Christodoulou, C. G. (2009). A cellular automata reconfigurable microstrip antenna design. In Proceedings of the IEEE antennas and propagation society international Symposium (pp. 1–4). North Charleston, SC, USA.

  65. Liu, X., Yang, X., & Kong, F. (2015). A frequency-reconfigurable monopole antenna with switchable stubbed ground structure. Radio Engineering,24(2), 449–454.

    Google Scholar 

  66. Jung, C. W., & De Flaviis, F. (2005). Reconfigurable multi-beam spiral antenna with RF-MEMS capacitive series switches fabricated on rigid substrates. In Proceedings of the IEEE antennas and propagation society international Symposium (pp. 421–424). Washington, DC.

  67. Safarpour, M., Rezaei, P., & Zarkhoshk, A. (2015). Compact multi-band reconfigurable antenna for cognitive radio. In Proceedings of the IEEE international Symposium on antennas and propagation & USNC/URSI national radio science meeting (pp. 2397–2398). British Columbia, Canada.

  68. Al-Husseini, M., Ramadan, A., Zamudio, M. E., Christodoulou, C. G., El-Hajj, A., & Kabalan, K.Y. (2011). A UWB antenna combined with a reconfigurable band pass filter for cognitive radio applications. In Proceedings of the IEEE topical conference on antennas and propagation in wireless communications (APWC) (pp. 902–904). Torino, Italy.

  69. Abu Tarboush, H. F., Khan, S., Nilavalan, R., Al-Raweshidy, H. S., & Budimir, D. (2009). Reconfigurable wideband patch antenna for cognitive radio. In Proceedings of the IEEE Loughborough antennas & propagation conference (LAPC) (pp. 141–144).

  70. Aly, M. G., & Wang, Y. (2013). An integrated narrowband-wideband antenna. In Proceedings of the IEEE Loughborough antennas & propagation conference (LAPC) (pp. 433–435).

  71. Al-Husseini, M., Ramadan, A., El-Hajj, A., Kabalan, K. Y. (2012). A reconfigurable antenna based on an ultra wide band to narrowband transformation. In PIERS proceedings (pp. 550–553). Moscow, Russia.

  72. Aboufoul, T., Alomainy, A., & Parini, C. (2012). Reconfiguring UWB monopole antenna for cognitive radio applications using GaAs FET switches. IEEE Antennas and Wireless Propagation Letters,11, 392–394.

    Google Scholar 

  73. Kumar, N., Raju, P. A., Behera, S. K. (2015). Frequency reconfigurable microstrip antenna for cognitive radio applications. In Proceedings of the international conference on communications and signal processing (ICCSP) (pp. 370–373). Melmaruvathur, India.

  74. Jin, G. P., Zhang, D. L., & Li, R. L. (2011). Optically controlled reconfigurable antenna for cognitive radio applications. Electronics Letters,47(17), 948–950.

    Google Scholar 

  75. Rodrigues, E. J. B., Lins, H. W. C., & Assuncao, A. G. D. (2014). Reconfigurable circular ring patch antenna for UWB and cognitive radio applications. In Proceedings of the 8th European conference on antennas and propagation (EuCAP 2014) (pp. 2744–2748). Hague, Netherlands.

  76. Boudaghi, H., Azarmanesh, M., & Mehranpour, M. (2012). A frequency-reconfigurable monopole antenna using switchable slotted ground structure. IEEE Antennas and Wireless Propagation Letters,11, 655–658.

    Google Scholar 

  77. Gupta, C., Maheshwari, D., Saraswat, R. K., & Kumar, M. (2014). A UWB frequency-band reconfigurable antenna using switchable slotted ground structure. In Proceedings of the fourth international conference on communication systems and network technologies (CSNT) (pp. 20–24). Bhopal, India

  78. Bitchikh, M., & Ghanem, F. (2014). A three-resolution UWB frequency reconfigurable antipodal vivaldi antenna for cognitive radios. In Proceedings of the 8th European conference on antennas and propagation (EuCAP 2014) (pp. 3665–3668). Hague, Netherlands

  79. Nachouane, H., Najid, A., Tribak, A., & Riouch, F. (2016). Dual port antenna combining sensing and communication tasks for cognitive radio. International Journal of Electronics and Telecommunications,62(2), 121–127.

    Google Scholar 

  80. Ghanem, F., Hall, P. S., & Kelly, J. R. (2009). Two port frequency reconfigurable antenna for cognitive radios. Electronics Letters,45(11), 534–536.

    Google Scholar 

  81. Muduli, A., & Mishra, R. K. (2015). Modified UWB microstrip monopole antenna for cognitive radio application. In Proceedings of the IEEE applied electromagnetics conference (AEMC) (pp. 1–2). Guwahati, Assam.

  82. Wang, Y., Denidni, T. A., Zeng, Q., & Wei, G. (2014). A design of integrated ultra-wideband/narrow band rectangular dielectric resonator antenna. In Proceedings of the IEEE international wireless symposium (IWS) (pp. 1–4). Xian, China

  83. Tummas, P., Krachodnok, P., & Wongsan, R. (2014). A frequency reconfigurable antenna design for UWB applications. In Proceedings of the 11th international conference on electrical engineering/electronics, computer, telecommunications and information paradigm (ECTI-CON) (pp. 1–4). Nakhon Ratchasima, Thailand.

  84. Augustin, G., & Denidni, T. A. (2012). An integrated ultra-wideband/narrow band antenna in uniplanar configuration for cognitive radio systems. IEEE Transactions on Antennas and Propagation,60(11), 5479–5484.

    Google Scholar 

  85. Tawk, Y., Costantine, J., & Christodoulou, C. G. (2011). A rotatable reconfigurable antenna for cognitive radio applications. In Proceedings of the IEEE Radio and Wireless Symposium (RWS) (pp. 158–161). Phoenix, Arizona.

  86. Augustin, G., Chacko, B. P., & Denidni, T. A. (2014). Diversity antenna with electronically switchable wide/narrow band for cognitive radio systems. In Proceedings of the 8th European conference on antennas and propagation (EuCAP 2014) (pp. 3243–3245), Hague, Netherlands

  87. Ebrahimi, E., Kelly, J. R., & Hall, P. S. (2011). Integrated wide-narrowband antenna for multi-standard radio. IEEE Transactions on Antennas and Propagation,59(7), 2628–2635.

    Google Scholar 

  88. Sahnoun, N., Messaoudene, I., Denidni, T. A., & Benghalia, A. (2015). Integrated flexible UWB/NB antenna conformed on a cylindrical surface. Progress in Electromagnetics Research Letters,55, 121–128.

    Google Scholar 

  89. Tawk, Y., & Christodoulou, C. G. (2009). A new reconfigurable antenna design for cognitive radio. IEEE Antennas and Wireless Propagation Letters,8, 1378–1381.

    Google Scholar 

  90. Al-Husseini, M., El-Hajj, A., Tawk, Y., Kabalan, K. Y., Christodoulou, C. G. (2010). A simple dual-port antenna system for cognitive radio applications. In Proceedings of the IEEE international conference on high performance computing and simulation (HPCS) (pp. 549–552). Caen, France.

  91. Tawk, Y., Costantine, J., Hemmady, S., Balakrishnan, G., Avery, K., & Christodoulou, C. G. (2012). Demonstration of a cognitive radio front end using an optically pumped reconfigurable antenna system (OPRAS). IEEE Transactions on Antennas and Propagation,60(2), 1075–1083.

    Google Scholar 

  92. Messaoudenel, D., Denidnil, T. A., & Benghalia, A. (2013). Ultra-wideband CPW antenna integrated with narrow band dielectric resonator. In Proceedings of the IEEE international Symposium on antennas and propagation (APSURSI) (pp. 1308–1309), Florida.

  93. Zheng, S.-H., & Liu, X.-Y., Tentzeris, M. M. (2014). A novel optically controlled reconfigurable antenna for cognitive radio systems. In Proceedings of the IEEE antennas and propagation society international Symposium (APSURSI) (pp. 1246–1247). Memphis, Tennessee.

  94. Erfani, E., Nourinia, J., Ghobadi, C., Niroo-Jazi, M., & Denidni, T. A. (2012). Design and implementation of an integrated UWB/reconfigurable-slot antenna for cognitive radio applications. IEEE Antennas and Wireless Propagation Letters,11, 77–80.

    Google Scholar 

  95. Wang, Y., Wei, G., Zeng, Q., & Zeng, Q. (2013). Integrated ultra-wideband/narrow band dielectric resonator antenna. In Proceedings of the IEEE international Symposium on antennas and propagation (APSURSI) (pp. 1692–1693). Florida.

  96. Wang, Y., Wei, G., Denidni, T. A., & Zeng, Q. (2013). Ultra-wideband planar monopole integrated with cylindrical dielectric resonator antenna. In Proceedings of the IEEE international Symposium on antennas and propagation (APSURSI) (pp. 1696–1697). Florida.

  97. Li, Y., Li, W., & Mittra, R. (2012). Integrated dual-purpose narrow/ultra-wide band antenna for cognitive radio applications. In Proceedings of the IEEE international Symposium on antennas and propagation (pp. 1–2). Chicago, Illinois

  98. Nella, A., & Gandhi, A. S. (2019). Multi-port merged planar UWB and narrow band antenna systems for cognitive radio. In Proceedings of the IEEE 10th international conference on computing, communication and networking technologies (ICCCNT) (pp. 1–4). Kanpur, India (In Press)

  99. Kumar, N. A., & Gandhi, A. S. (2016). A compact novel three-port integrated wide and narrow band antenna system for cognitive radio applications. International Journal of Antennas and Propagation 2016, Article ID: 2829357.

  100. Nella, A., & Gandhi, A. S. (2018). A five-port integrated UWB and narrowband antenna system design for CR applications. IEEE Transactions on Antennas and Propagation,66(4), 1669–1676.

    Google Scholar 

  101. Nella, A., & Gandhi, A. S. (2019). A planar four-port integrated UWB and NB antenna system for CR in 3.1–10.6 GHz. In Proceedings of the 25th national conference on communication (NCC) (pp. 1–6). Bangalore, India.

  102. Yeonjeong, O., Jin, Y., & Choi, J. (2019). A compact four-port coplanar antenna based on an excitation switching reconfigurable mechanism for cognitive radio applications. Applied Sciences,9(15), 1–16.

    Google Scholar 

  103. Srikar, D., & Anuradha, S. (2019). A twelve port MIMO antenna with polarisation diversity for cognitive radio applications. Electronics Letters. https://doi.org/10.1049/el.2019.2291.

    Article  Google Scholar 

  104. Yahia, S., Mohamed, A., & Al-Ali, A. K. (2017). A hardware implementation for efficient spectrum access in cognitive radio networks. In Proceedings of the IEEE wireless communications and networking conference (WCNC) (pp. 1–6). San Francisco.

  105. Eichinger, G., Chowdhury, K., & Miriam, L. (2012). Cognitive radio universal software hardware. In Proceedings of the IEEE international Symposium on dynamic spectrum access networks (pp. 270–271). Washington

  106. Zhe, H., Wang, W., & Zhang, Y. (2011). Design and implementation of cognitive radio hardware platform based on USRP. In Proceedings of the international conference on computer theory and applications (pp. 160–164). Alexandria, Egypt

  107. Lotze, J., Fahmy, S. A., Noguera, J., & Doyle, L. E. (2011). A model-based approach to cognitive radio design. IEEE Journal on Selected Areas in Communications,29(2), 455–468.

    Google Scholar 

  108. Lotze, J., Fahmy, S. A., Noguera, J., Doyle, L., & Esser, R. (2008). An FPGA-based cognitive radio framework. In Proceedings of the irish signals and systems conference (pp. 138–143). Vancouver, Canada.

  109. Anveshkumar, N., & Gandhi, A. S. (2019). Spectrum sensing and communication functionalities verification in cognitive radio. International Journal of Communication Systems. https://doi.org/10.1002/dac.4208.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to express their sincere thanks to Prof. Dr. Truong Khang Nguyen, Division of Computational Physics, Institute for Computational Science, Ton Duc Thang University, Ho Chi Minh City, Vietnam for giving his value suggestion, comments and support to complete this work as effective.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vigneswaran Dhasarathan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anveshkumar, N., Gandhi, A.S. & Dhasarathan, V. Cognitive radio paradigm and recent trends of antenna systems in the UWB 3.1–10.6 GHz. Wireless Netw 26, 3257–3274 (2020). https://doi.org/10.1007/s11276-019-02245-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-019-02245-7

Keywords

Navigation