Skip to main content

Advertisement

Log in

Secrecy capacity maximization for untrusted UAV-assisted cooperative communications with wireless information and power transfer

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

This article addresses the problem of secure communication in an unmanned aerial vehicle (UAV)-aided wireless communication system in which a source sends confidential messages to a destination via an untrusted UAV mounted with a miniaturized energy-harvesting transceiver. The UAV can overhear the source’s confidential messages. To create a positive secrecy rate, the destination sends jamming signals during the communication. We aim to maximize the achievable secrecy rate for two scenarios: security-on-demand UAV (SoD-UAV), where the UAV can modify its trajectory and power-splitting (PS) ratio to serve the secure communication, and non-security-on-demand UAV (nSoD-UAV), where the UAV only forwards the source’s messages. For the nSoD-UAV, we optimize the transmit powers at the source and the destination for a given UAV’s trajectory and given PS ratios. For the SoD-UAV, the UAV’s trajectory, the PS ratios and the transmit powers are jointly optimized. Due to the non-convex optimization problems, we use successive convex optimization and block coordinate descent methods to find efficient approximate solutions. Numerical results verify that the achievable secrecy rate is significantly improved using the proposed algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Xu, J., Zeng, Y., & Zhang, R. (2018). UAV-enabled wireless power transfer: Trajectory design and energy optimization. IEEE Transactions on Wireless Communications, 17(8), 5092–5106.

    Article  Google Scholar 

  2. Sun, J., Wang, Z., & Huang, Q. (2019). Cyclical NOMA based UAV-enabled wireless network. IEEE Access, 7, 4248–4259.

    Article  Google Scholar 

  3. Cho, S., Lee, K., Kang, B., Koo, K., & Joe, I. (2018). Weighted harvest-then-transmit: UAV-enabled wireless powered communication networks. IEEE Access, 6, 72212–72224.

    Article  Google Scholar 

  4. Feng, Y., Yan, S., Yang, Z., Yang, N., & Yuan, J. (2018). User and relay selection with artificial noise to enhance physical layer security. IEEE Transactions on Vehicular Technology, 67(11), 10906–10920.

    Article  Google Scholar 

  5. Liu, W., Zhou, X., Durrani, S., & Popovski, P. (2016). Secure communication with a wireless-powered friendly Jammer. IEEE Transactions on Wireless Communications, 15(1), 401–415.

    Article  Google Scholar 

  6. Zhu, F., & Yao, M. (2016). Improving physical-layer security for CRNs Using SINR-based cooperative beamforming. IEEE Transactions on Vehicular Technology, 65(3), 1835–1841.

    Article  Google Scholar 

  7. Zhang, W., Chen, J., Kuo, Y., & Zhou, Y. (2019). Artificial-noise-aided optimal beamforming in layered physical layer security. IEEE Communications Letters, 23(1), 72–75.

    Article  Google Scholar 

  8. Zhong, C., Yao, J. & Xu, J. (2019). Secure UAV communication with cooperative jamming and trajectory control. IEEE Communications Letters (accepted).

  9. Cai, Y., Cui, F., Shi, Q., Zhao, M., & Li, G. Y. (2018). Dual-UAV-enabled secure communications: Joint trajectory design and user scheduling. IEEE Journal on Selected Areas in Communication, 36(9), 1972–1985.

    Article  Google Scholar 

  10. Cui, M., Zhang, G., Wu, Q., & Ng, D. W. K. (2018). Robust trajectory and transmit power design for secure UAV communications. IEEE Transactions on Vehicular Technology, 67(9), 9042–9046.

    Article  Google Scholar 

  11. Liu, L., Zhang, R., & Chua, K. C. (2014). Secrecy wireless information and power transfer With MISO beamforming. IEEE Transactions on Signal Processing, 62(7), 1850–1863.

    Article  MathSciNet  Google Scholar 

  12. Zhang, H., Li, C., Huang, Y., & Yang, L. (2016). Secure beamforming for SWIPT in multiuser MISO broadcast channel with confidential messages. IEEE Communications Letters, 19(8), 1347–1350.

    Article  Google Scholar 

  13. Kalamkar, S. S., & Banerjee, A. (2017). Secure communication via a wireless energy harvesting untrusted relay. IEEE Transactions on Vehicular Technology, 66(3), 2199–2213.

    Article  Google Scholar 

  14. Boyd, S., & Vandenberghe, L. (2004). Convex optimization. Cambridge: Cambridge Univ. Press.

    Book  Google Scholar 

  15. Chong, E. K. P., & Zak, S. H. (2004). An introduction to optimization (2nd ed.). Hoboken: Wiley.

    MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2019R1A6A1A03032988).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Van Phu Tuan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendices

1.1 Appendix 1

The convexity of \(f_1(t_1,t_2)\) is confirmed through its Hessian matrix. By defining \(T=(t_1+a_1)(t_2+a_2)\), the first-order derivatives of \(f_1(t_1,t_2)\) are expressed by

$$\begin{aligned} \tfrac{\partial }{\partial {t_1}}{f_1}\left( t_1,t_2\right)&=\left( \tfrac{1}{T+a_0}-\tfrac{1}{T}\right) \tfrac{\partial }{\partial {t_1}}T, \end{aligned}$$
(36)
$$\begin{aligned} \tfrac{\partial }{\partial {t_2}}{f_1}\left( t_1,t_2\right)&=\left( \tfrac{1}{T+a_0}-\tfrac{1}{T}\right) \tfrac{\partial }{\partial {t_2}}T, \end{aligned}$$
(37)

where

$$\begin{aligned} \tfrac{\partial }{\partial {t_1}}T&=t_2+a_2, \end{aligned}$$
(38)
$$\begin{aligned} \tfrac{\partial }{\partial {t_2}}T&=t_1+a_1. \end{aligned}$$
(39)

Next, the second-order derivatives of \(f_1(t_1,t_2)\) are expressed by

$$\begin{aligned} \tfrac{\partial ^2}{(\partial {t_1})^2}f_1\left( t_1,t_2\right)&=\left( \tfrac{1}{T^2}-\tfrac{1}{\left( T+a_0\right) ^2}\right) \left( \tfrac{\partial }{\partial {t_1}}T\right) ^2, \end{aligned}$$
(40)
$$\begin{aligned} \tfrac{\partial ^2}{(\partial {t_2})^2}f_1\left( t_1,t_2\right)&=\left( \tfrac{1}{T^2}-\tfrac{1}{\left( T+a_0\right) ^2}\right) \left( \tfrac{\partial }{\partial {t_2}}T\right) ^2, \end{aligned}$$
(41)
$$\begin{aligned} \tfrac{\partial ^2}{\partial {t_1}\partial {t_2}}f_1\left( t_1,t_2\right)&=\left( \tfrac{1}{T^2}-\tfrac{1}{\left( T+a_0\right) ^2}\right) \nonumber \\&\quad \times \left( \left( \tfrac{\partial }{\partial {t_1}}T\right) \left( \tfrac{\partial }{\partial {t_2}}T\right) -\tfrac{T\left( T+a_0\right) }{2T+a_0}\right) . \end{aligned}$$
(42)

Then the Hessian matrix is given by

$$\begin{aligned}&{H}=\left( \tfrac{1}{T^2}-\tfrac{1}{\left( T+a_0\right) ^2}\right) \times \nonumber \\&\left[ \begin{array}{cc} {\left( \tfrac{\partial }{\partial {t_1}T}\right) ^2}&{}{\tfrac{\partial }{\partial {t_1}}T\tfrac{\partial }{\partial {t_2}}T-\tfrac{T\left( T+a_0\right) }{2T+a_0}}\\ {\tfrac{\partial }{\partial {t_1}}T\tfrac{\partial }{\partial {t_2}}T-\tfrac{T\left( T+a_0\right) }{2T+a_0}}&{}{\left( \tfrac{\partial }{\partial {t_2}}T\right) ^2} \end{array}\right] . \end{aligned}$$
(43)

Let \(\mathbf{u }=\left[ u_1,u_2\right] ,\mathbf{u }\in {\mathbb {R}}^2\), and \(J=\left( \tfrac{1}{T^2}-\tfrac{1}{\left( T+a_0\right) }^2\right) ^{-1}\mathbf{u }H\mathbf{u }^\top \). Substituting (43) into J, we have

$$\begin{aligned} J&=\left( \tfrac{\partial }{\partial {t_1}}T\right) ^2u_1^2+\left( \tfrac{\partial }{\partial {t_2}}T\right) ^2u_2^2\nonumber \\&\quad +2\left( \tfrac{\partial }{\partial {t_1}}T\tfrac{\partial }{\partial {t_2}}T-\tfrac{T\left( T+a_0\right) }{2T+a_0}\right) u_1u_2. \end{aligned}$$
(44)

Using the fact that \(\tfrac{T}{2}\leqslant \tfrac{T\left( T+a_0\right) }{2T+a_0}\leqslant {T}\) as \(t_1>0\) and \(t_2>0\), and substituting (38) and (39) into (44), we have

$$\begin{aligned} J&\geqslant \left( \tfrac{\partial }{\partial {t_1}}T\right) ^2u_1^2+\left( \tfrac{\partial }{\partial {t_2}}T\right) ^2u_2^2\nonumber \\&\quad -2\max \left( \left| \tfrac{\partial }{\partial {t_1}}T\tfrac{\partial }{\partial {t_2}}T-\tfrac{T}{2}\right| ,\left| \tfrac{\partial }{\partial {t_1}}T\tfrac{\partial }{\partial {t_2}}T-T\right| \right) \left| u_1u_2\right| \nonumber \\&=\left( \left( t_2+a_2\right) \left| u_1\right| +\left( t_1+a_1\right) \left| u_2\right| \right) ^2. \end{aligned}$$
(45)

Using (45), we show that H is a positive definite matrix; hence, Theorem 1 is proved.

1.2 Appendix 2

1.2.1 Convexity of \(f_2\left( \theta \right) \)

The first-order derivative of \(f_2\left( \theta \right) \) is expressed by

$$\begin{aligned} \tfrac{\partial }{\partial \theta }f_2\left( \theta \right) =\left( \tfrac{a_1}{\left( 1-\theta \right) ^2}-\tfrac{a_2}{\theta ^2}\right) f_4\left( \theta \right) , \end{aligned}$$
(46)

where \(f_4\left( \theta \right) =\left( a_0+\tfrac{a_1}{1-\theta }+\tfrac{a_2}{\theta }\right) ^{-1}-\left( \tfrac{a_1}{1-\theta }+\tfrac{a_2}{\theta }\right) ^{-1}\).

Next, the second-order derivative of \(f_2\left( \theta \right) \) is expressed by

$$\begin{aligned} \tfrac{\partial ^2}{\left( \partial \theta \right) ^2}f_2\left( \theta \right)&=\left( \frac{2a_1}{\left( 1-\theta \right) ^3}+\frac{2a_2}{\theta ^3}\right) f_4\left( \theta \right) -\left( \frac{a_1}{\left( 1-\theta \right) ^2} -\frac{A_2}{\theta ^2}\right) ^2\nonumber \\&\quad \times \left( \frac{1}{\tfrac{a_1}{1-\theta }+\tfrac{a_2}{\theta }+a_0} +\frac{1}{\tfrac{a_1}{1-\theta }+\tfrac{a_2}{\theta }}\right) f_4 \left( \theta \right) . \end{aligned}$$
(47)

After some manipulation, (47) can be written as

$$\begin{aligned} \tfrac{\partial ^2}{\left( \partial \theta \right) ^2}f_2 \left( \theta \right) =\frac{f_4\left( \theta \right) f_5 \left( \theta \right) }{f_6\left( \theta \right) }, \end{aligned}$$
(48)

where

$$\begin{aligned} f_5\left( \theta \right)&={2}a_1^2a_2\theta ^2\left( 1-\theta \right) +2a_1a_2^2\theta \left( 1-\theta \right) ^2\nonumber \\&\quad +a_0\theta \left( 1-\theta \right) \left( a_2\left( 1-\theta \right) ^2+a_1\theta ^2\right) ^2\nonumber \\&\quad +2a_0a_1a_2\theta ^2\left( 1-\theta \right) ^2\left( \theta ^2+\left( 1-\theta \right) ^2\right) , \end{aligned}$$
(49)
$$\begin{aligned} f_6\left( \theta \right)&=\left( 1-\theta \right) ^3\theta ^3\left( a_0\theta \left( 1-\theta \right) +a_1\theta +a_2\left( 1-\theta \right) \right) \nonumber \\&\quad \times \left( a_1\theta +a_2\left( 1-\theta \right) \right) . \end{aligned}$$
(50)

Since \(f_4(\theta )<0,f_5(\theta )>0\) and \(f_6(\theta )>0,\forall \theta \in (0,1)\), we can confirm that \(\tfrac{\partial ^2}{\left( \partial \theta \right) ^2}f_2\left( \theta \right) <0,\forall \theta \in \left( 0,1\right) \). Therefore, \(f_2\left( \theta \right) \) is a concave function with respect to \(\theta \in \left( 0,1\right) \).

1.2.2 Convexity of \(f_3\left( \theta \right) \)

It is easy to obtain the second-order derivative of \(f_3\left( \theta \right) \) as

$$\begin{aligned} \tfrac{\partial ^2}{\left( \partial \theta \right) ^2}f_3 \left( \theta \right) =\left( 1+\tfrac{1}{a_1}-\theta \right) ^{-2}- \left( 1+\tfrac{1}{a_0+a_1}-\theta \right) ^{-2}. \end{aligned}$$
(51)

Since \(\tfrac{\partial ^2}{\left( \partial \theta \right) ^2}f_3\left( \theta \right) <0,\forall \theta \in \left( 0,1\right) \); hence, \(f_3\left( \theta \right) \) is a concave function with respect to \(\theta \in \left( 0,1\right) \).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tuan, V.P., Sang, N.Q. & Kong, H.Y. Secrecy capacity maximization for untrusted UAV-assisted cooperative communications with wireless information and power transfer. Wireless Netw 26, 2999–3010 (2020). https://doi.org/10.1007/s11276-020-02255-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-020-02255-w

Keywords

Navigation