Skip to main content
Log in

MAC-layer rate control for 802.11 networks: a survey

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Rate control at the MAC-layer is one of the fundamental building blocks in many wireless networks. Over the past two decades, around thirty mechanisms have been proposed in the literature. Among them, there are mechanisms that make rate selection decisions based on sophisticated measurements of wireless link quality, and others that are based on straight-forward heuristics. Minstrel, for example, is an elegant mechanism that has been adopted by hundreds of millions of computers, yet, not much was known about its performance until recently. The purpose of this paper is to provide a comprehensive survey and analysis of the existing solutions from the two fundamental aspects of rate control—metrics and algorithms. We also review how these solutions were evaluated and compared against each other. Based on our detailed studies and observations, we share important insights on future development of rate control mechanisms at the MAC-layer. This discussion also takes into account the recent developments in wireless technologies and emerging applications, such as Internet-of-Things, and shows issues that need to be addressed in the design of new rate control mechanisms suitable for these technologies and applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Cisco, Inc. (2016). The internet of everything. Retrieved 2016 from http://www.cisco.com/web/about/ac79/innov/IoE.html

  2. Balasubramanian, N., Balasubramanian, A., & Venkataramani, A. (2009). Energy consumption in mobile phones: A measurement study and implications for network applications. In Proceedings of SIGCOMM IMC’09, IMC ’09. (pp. 280–293). ACM.

  3. Ngo, T. (2016, June). Why wi-fi stinks and how to fix it. Retrieved 2016 from http://spectrum.ieee.org/telecom/wireless/why-wifi-stinksand-how-to-fix-it?

  4. PID. Retrieved 2016 from http://wireless.kernel.org/en/developers/Documentation/mac80211/RateControl/PID

  5. Minstrel specification. Retrieved 2016 from http://madwifi-project.org/browser/madwifi/trunk/ath_rate/minstrel

  6. Holland, G., Vaidya, N., & Bahl, P. (2001). A rate-adaptive MAC protocol for multi-hop wireless networks. In Proceedings of MOBICOM. (pp. 236–251). ACM.

  7. Judd, G., Wang, X., & Steenkiste, P. (2007). Low-overhead channel-aware rate adaptation. In Proceedings of MOBICOM. (pp. 354–357), Montreal, QC: ACM.

  8. Chen, X., Gangwal, P., & Qiao, D. (2012). RAM: Rate adaptation in mobile environments. IEEE Transactions on Mobile Computing, 11(3), 464–477.

    Google Scholar 

  9. Khan, S., Mahmud, S.A., Noureddine, H., & Al-Raweshidy, H.S. (2010). Rate-adaptation for multi-rate IEEE 802.11 WLANs using mutual feedback between transmitter and receiver. In Proceedings of PIMRC. (pp. 1372–1377). IEEE.

  10. Biaz, S., & Wu, S. (2008). Rate adaptation algorithms for ieee 802.11 networks: A survey and comparison. In IEEE Symposium on Computers and Communications. (pp. 130–136). IEEE.

  11. Das, S., Barman, S., & Bhunia, S. (2014). Performance analysis of ieee 802.11 rate adaptation algorithms categorized under rate controlling parameters. In Proceedings of the 2014 International Conference on Information and Communication Technology for Competitive Strategies. ACM.

  12. IEEE Comptuer Society. IEEE standard 802.11-2012 (2012).

  13. Yin, W., Hu, P., & Indulska, J. (2015, March 4). Rate control in the mac80211 framework: Overview, evaluation and improvements. Computer Networks.

  14. IEEE standard definitions of terms for antennas. (1983, June). IEEE Std, 145–1983, 1–31.

  15. Yin, W., Hu, P., Indulska, J., & Bialkowski, K. (2012, October). Performance of mac80211 rate control mechanisms. In Proceedings of ACM MSWiM. Miami, FL, USA.

  16. Kim, J., Kim, S., Choi, S., & Qiao, D. (2006, April). CARA: collision-aware rate adaptation for IEEE 802.11 WLANs. In Proceedings of INFOCOM. (pp. 1 –11).

  17. Acharya, P. A. K., Sharma, A., Belding, E. M., Almeroth, K. C., & Papagiannaki, K. (2008). Energy-efficient pcf operation of ieee 802.11a wireless lan. In Proceedings of SECON’08. (pp. 1–9).

  18. Adame, T., Bel, A., Bellalta, B., Barcelo, J., & Oliver, M. (2014, 01 Dec). IEEE 802.11AH: The WiFi approach for M2M communications. In IEEE Wireless Communications. (pp. 144–152).

  19. Tian, L., Famaey, J., & Latré, S. (2016, June). Evaluation of the IEEE 802.11ah Restricted Access Window mechanism for dense IoT networks. In Proceedings of IEEE 17th WoWMoM. (pp. 1–9).

  20. Tian, L., Mehari, M., Santi, S., Latré, S., De Poorter, E., & Famaey, J. (2018). IEEE 802.11ah restricted access window surrogate model for real-time station grouping. In Proceedings of IEEE WoWMoM, 06 2018.

  21. Khorov, E., Lyakhov, A., & Yusupov, R. (2018). Two-Slot Based Model of the IEEE 802.11ah Restricted Access Window with Enabled Transmissions Crossing Slot Boundaries. In Proceedings of IEEE WoWMoM. 06 2018.

  22. Vutukuru, M., Balakrishnan, H., & Jamieson, K. (2009). Cross-layer wireless bit rate adaptation. In Proceedings of SIGCOMM. (pp. 3–14). ACM.

  23. Glass, S., Guerin, J., Hu, P., Portmann, M., & Tan, W. L. (April 2013). Specification versus reality: Experimental evaluation of link capacity estimation in ieee 802.11. In Wireless Communications and Networking Conference (WCNC). 2013 IEEE, (pp. 380–385).

  24. Karmerman, Ad, & Monteban, L. (1997). WaveLAN-II: A high-performance wireless LAN for the unlicensed band. Bell Labs Technical Journal, 2(3), 118–133. (Special Issue: Wireless Autumn (Fall) 1997)

    Google Scholar 

  25. Lacage, M., Manshaei, M. H., & Turletti, T. (2004). IEEE 802.11 rate adaptation: A practical approach. In Proceedings of the 7th ACM MSWiM. (pp. 126–134), Venice: ACM.

  26. Wong, S. H. Y., Yang, H., Lu, S., & Bharghavan, V. (2006). Robust rate adaptation for 802.11 wireless networks. In Proceedings of MOBICOM. (pp. 146–157). Los Angeles, CA: ACM.

  27. Shaoen, W., & Biaz, S. (2007, June). ERA: Efficient rate adaptation algorithm with fragmentation. In Auburn University, Technique Report.

  28. Pefkianakis, I., Wong, S. H. Y., Yang, H., Lee, S.-B., & Lu, S. (2013). Toward history-aware robust 802.11 rate adaptation. IEEE Transactions on Mobile Computing, 12(3), 502–515.

    Google Scholar 

  29. Onoe specification. Retrieved 2016 from http://sourceforge.net/project/madwifi.

  30. Bicket, J. C. (2005). Bit-rate Selection in Wireless Networks. PhD thesis, MIT Master’s Thesis.

  31. Wang, S.-C., & Helmy, A. (2011). BEWARE: Background traffic-aware rate adaptation for IEEE 802.11. IEEE/ACM Transactions on Networking (TON), 19(4), 1164–1177.

    Google Scholar 

  32. Yin, W., Hu, P., Indulska, J., Portmann, M., & Guerin, J. (2012). Robust MAC-layer rate control mechanisms for 802.11 wireless networks. In Proceedings of LCN. (pp. 419–427).

  33. Guerin, J., Portmann, M., Bialkowski, K., Tan, W, L., & Glass, S. (2010). Low-cost wireless link capacity estimation. 01. In ISWPC’10: Proceedings of the 5th IEEE international conference on Wireless pervasive computing. (pp. 343–348).

  34. Pefkianakis, I., Lee, S.-B., & Lu, S. (2013). Towards MIMO-aware 802.11n rate adaptation. IEEE/ACM Transaction on Networking, 21(3), 692–705.

    Google Scholar 

  35. Byeon, S., Yoon, K., Yang, C., & Choi, S. (2017, May). Strale: Mobility-aware phy rate and frame aggregation length adaptation in WLANS. In Proceedings of IEEE INFOCOM. (pp. 1–9).

  36. Sadeghi, B., Kanodia, V., Sabharwal, A., & Knightly, E.. (2002). Opportunistic media access for multirate ad hoc networks. In Proceedings of MOBICOM. (pp. 24–35). ACM.

  37. Zhang, J., Tan, K., Zhao, J., Wu, H., & Zhang, Y. (2008, April). A practical snr-guided rate adaptation. In Proceedings of INFOCOM. (pp. 2083 –2091).

  38. Pavon, Jd. P., & Choi, S. (2003). Link adaptation strategy for IEEE 802.11 WLAN via received signal strength measurement. In Proceedings of ICC, (vol. 2, pp. 1108 –1113).

  39. Rahul, H., Edalat, F., Katabi, D., & Sodini, C. G. (2009). Frequency-aware rate adaptation and mac protocols. In Proceedings of MOBICOM. (pp. 193–204), Beijing, China: ACM.

  40. Lee, H., Kim, H.-S., & Bank, S. (2014). InFRA: In-frame rate adaptation in fast fading channel environments. In Proceedings of IEEE ICC, (pp. 2885–2890).

  41. Okhwan, L., Jihoon, K., Jongtae, L., & Sunghyun, C. (2015, January). SIRA: SNR-Aware intra-frame rate adaptation. In IEEE Communications Letters, (pp. 90–93).

  42. Halperin, D., Hu, W., Sheth, A., & Wetherall, D. (2010). Predictable 802.11 packet delivery from wireless channel measurements. In Proceedings of SIGCOMM, (pp. 159–170). New York, NY: ACM.

  43. Goldsmith, A. (2005). Wireless communications. Cambridge: Cambridge University Press.

    Google Scholar 

  44. Shen, W.-l., Tung, Y.-C., Lee, K.-C., Lin, K. C.-J., Shyamnath, G., Dina, K., & Chen, M.-S. (2014, January). Rate adaptation for 802.11 multiuser mimo networks. In IEEE Transaction on Mobile Computing, (pp. 35–47).

  45. Guillaud, M., Slock, D. T. M., & Knopp, R. (2005, August). A practical method for wireless channel reciprocity exploitation through relative calibration. In Proceedings of the Eighth International Symposium on Signal Processing and Its Applications, 2005, (vol. 1, pp. 403–406).

  46. Song, L., & Wu, S. (2013). AARC: Cross-layer wireless rate control driven by fine-grained channel assessment. In Proceedings of IEEE International Conference on Communications (ICC). (pp. 3311–3316).

  47. Shamy, K., Assi, C., & EI-Najjar, J. (2008). Efficient rate adaptation with QoS support for wireless networks. In Proceedings of IEEE GlOBECOM. (pp. 1–6).

  48. Lee, T.-H., Marshall, A., & Zhou, B. (2006). A qos-based rate adaptation strategy for IEEE a/b/g PHY Schemes using IEEE 802.11e in ad-hoc networks. In Proceedings of International Conference on Networking and Services (ICNS), (pp. 113–118).

  49. Haratcherev, I., Langendoen, K., Lagendijk, R., & Sips, H. (2004). Hybrid rate control for IEEE 802.11. In Proceedings of MobiWac’04. (pp. 10–18), New York, NY: ACM.

  50. Kamoltham, N., Nakorn, K. N., & Rojviboonchai, K. (2012). From NS2 to NS3 implementation and evaluation. In Proceedings of Computing, Communications and Applications Conference (ComComAp), (pp. 35–40).

  51. Comparetto, G., Hallenbeck, P., Mirhakkak, M., Schult, N., Wade, R., & DiGennaro, M. (2011). Verification and validation of the QualNet JTRS WNW and SRW waveform models. In Proceedings of Military Communications (MILCOM), (pp. 1818–1826).

  52. Raychaudhuri, D., Seskar, I., Ott, M., Ganu, S., Ramachandran, K., Kremo, H., Siracusa, R., Liu, H., & Singh, M. (2005). Overview of the ORBIT radio grid testbed for evaluation of next-generation wireless network protocols. In Proceedings of IEEE Wireless Communications and Networking Conference. (pp. 1664–1669).

  53. Bonney, J., Bowering, G., Marotz, R., & Swanson, K. (2008). Hardware-in-the-loop emulation of mobile wireless communication environments. In Proceedings of IEEE Aerospace Conference, (pp. 1–9).

  54. Bialkowski, K., & Portmann, M. (2010). Design of test-bed for wireless mesh networks. In IEEE Antennas and propagation International Symposium, Toronto, Canada.

  55. Biaz, S., & Wu, S. (2008). Rate adaptation algorithms for IEEE 802.11 networks: A survey and comparison. In Proceedings of IEEE Symposium on Computers and Communications.

  56. Judd, G., Wang, X., & Steenkiste, P. (2008). Efficient channel-aware rate adaptation in dynamic environments. In Proceedings of ACM MobiSys, (pp. 118–131). New York, NY.

  57. Camp, J., & Knightly, E. (2008). Modulation rate adaptation in urban and vehicular environments: Cross-layer implementation and experimental evaluation. In Proceedings of MOBICOM. (pp. 315–326), San Francisco, CA: ACM.

  58. Yin, W., Bialkowski, K., Indulska, J., & Hu, P. (2010). Evaluations of MadWifi MAC layer rate control mechanisms. In Proceedings of IWQoS.

  59. Pefkianakis, I., Hu, Y., Wong, S. H. Y., Yang, H., & Lu, S. (2010). MIMO rate adaptation in 802.11n wireless networks. In Proceedings of MOBICOM. Chicago, Illinois, USA, Sep. 20–24.

  60. Ancillotti, E., Bruno, R., & Conti, M.. (2008). Experimentation and performance evaluation of rate adaptation algorithms in wireless mesh networks. In Proceedings of the 5th ACM symposium on Performance evaluation of wireless ad hoc, sensor, and ubiquitous networks, (pp. 7–14), Vancouver, BC: ACM.

  61. CMU. (2006). A controlled wireless networking testbed based on a wireless signal propagation emulator. http://www.cs.cmu.edu/emulator

  62. Xia, D., Hart, J., & Fu, Q. (June 2013). Evaluation of the minstrel rate adaptation algorithm in IEEE 802.11g wlan. In Proceedings of ICC, Budapest. Hungary.

  63. Gast, M.S. (2015). 802.11ac: A survival guide. Second release, O’REILLy.

  64. Wang, S.-C., & Helmy, A. (2008, June). Beware: Background traffic-aware rate adaptation for ieee 802.11. In 2008 International Symposium on a World of Wireless, Mobile and Multimedia Networks, (pp. 1–12).

  65. Lin, C.-H., Kate Lin, C.-J., & Chen, W.-T. (2014). Rate adaptation for highly dynamic body area networks. In Proceedings of CPSCom.

  66. Yao, Y., Zhou, X., & Zhang, K.. (2014, July). Density-aware rate adapation for vehicle safety communications in the highway environment. In IEEE Communications Letters, (pp. 1167–1170).

  67. Maskooki, A., Soh, C. B., Gunawan, E., & Low, K. S. (2013). Ultra-wideband real-time dynamic channel characterization and system-level modeling for radio links in body area networks. IEEE Transactions on Microwave Theory and Techniques, 61(8), 2995–3004.

    Google Scholar 

  68. Choudhury, R. R., & Vaidya, N. H. (2003). Deafness: A mac problem in ad hoc networks when using directional antennas. Technical Report.

  69. Camp, J., & Knightly, E. (2010). Modulation rate adaptation in urban and vehicular environments: Cross-layer implementation and experimental evaluation. IEEE/ACM Transactions on Networking, 18(6), 1949–1962.

    Google Scholar 

  70. Choi, H., Gong, T., Kim, J., SHin, J., & Lee, S.-J. (2019). Dissecting 802.11ac performance—Why you should turn off mu-mimo (poster). In Proceedings of the 17th ACM MObISys, MobiSys ’19. (pp. 510–511), New York, NY, USA. ACM.

  71. Sur, S., Pefkianakis, I., Zhang, X., & Kim, K.-H. (2016). Practical mu-mimo user selection on 802.11ac commodity networks. In Proceedings of ACM MoBiCom, MobiCom ’16. (pp. 122–134).

  72. Akhtar, A., & Ergen, S. C. (2018). Directional mac protocol for ieee 802.11ad based wireless local area networks. Ad Hoc Networks, 69, 49–64.

    Google Scholar 

  73. Kiran, M. P. R. S., & Rajalakshmi, P. (2019). Saturated Throughput Analysis of IEEE 802.11ad EDCA For High Data Rate 5G-IoT Applications. IEEE Transactions on Vehicular Technology, 68(5), 4774–4785.

    Google Scholar 

  74. Praveen Kumar, K., & Govindaraj, E. (2019). Quality enhancement with fault tolerant embedding in video transmission over wmsns in 802.11e wlan. Ad Hoc Networks, 88, 18–31.

    Google Scholar 

  75. Part 11: Wireless lan medium access control (mac) and physical layer (phy) specications - amendment 3: Mac enhancements for robust audio video streaming. IEEE Amendment 802.11aa, (2012).

  76. Zawia, H. I., Hassan, R., & Dahnil, D. P. (2018). A survey of medium access mechanisms for providing robust audio video streaming in ieee 802.11aa standard. IEEE Access, 6, 27690–27705.

    Google Scholar 

  77. Gringoli, F., Serrano, P., Ucar, I., Facchi, N., & Azcorra, A. (2018). Experimental qoe evaluation of multicast video delivery over ieee 802.11aa wlans. IEEE Transactions on Mobile Computing, (pp. 1–1).

  78. Mansour, K., Jabri, I., & Ezzedine, T. (2017). A multicast rate adaptation algorithm over IEEE 802.11aa GCR block ack scheme. In Proceedings of 13th International Wireless Communications and Mobile Computing Conference (IWCMC). IEEE.

  79. Salvador, P., Cominardi, L., Gringoli, F., & Serrano, P. (2013). A first implementation and evaluation of the ieee 802.11 aa group addressed transmission service. ACM SIGCOMM Computer Communication Review, 44(1), 35–41.

    Google Scholar 

  80. Yin, W., Hu, P., Wang, W., Wen, J., & Zhou, H. (2020). FASUS: A fast association mechanism for 802.11ah networks. Computer Networks, 03.

  81. Aust, S., Venkatesha Prasad, R., & Niemegeers, I. G. M. M. (2012). IEEE 802.11ah: Advantages in standards and further challenges for sub 1 GHz Wi-Fi. In Proceedings of IEEE ICC. IEEE.

  82. Ali, M. Z., Mišić, J., & Mišić, V. B. (2019). Performance evaluation of heterogeneous iot nodes with differentiated qos in ieee 802.11ah raw mechanism. IEEE Transactions on Vehicular Technology, 68(4), 3905–3918.

    Google Scholar 

  83. Aust, S., Venkatesha Prasad, R., & Niemegeers, I. G. M. M. (2015). Outdoor long-range wlans: A lesson for ieee 802.11ah. IEEE Communication Surveys & Tutorials, 17(3), 1761–1775.

    Google Scholar 

  84. Khorov, E., Kiryanov, A., Lyakhov, A., & Bianchi, G. (2019, First quarter). A tutorial on IEEE 802.11ax High Efficiency WLANs. IEEE Communications Surveys Tutorials, 21(1):197–216.

    Google Scholar 

  85. Bellalta, B. (2016). Ieee 802.11ax: High-efficiency wlans. IEEE Wireless Communications, 23(1), 38–46.

    Google Scholar 

  86. Sur, S., Pefkianakis, I., Zhang, X., & Kim, K.-H. (2016). Practical mu-mimo user selection on 802.11 ac commodity networks. In Proceedings of the 22nd Annual International Conference on Mobile Computing and Networking, (pp. 122–134). ACM.

  87. Garroppo, R.G., Giordano, S., Lucetti, S., & Tavanti, L. (2007). Providing air-time usage fairness in IEEE 802.11 networks with deficit transmission time (DTT) scheduler. In Wireless Networks, (pp. 481–495).

  88. Bhanage, G., Vete, D., Seskar, I., & Raychaudhuri, D. (2010). SplitAP: Leveraging wireless network virtualization for flexible sharing of WLANs. In Proceedings of GLOBECOM, (pp. 1–6).

  89. Yin, W., Peizhao, H., Wen, J. & Zhou, H. (2020). Ack spoofing on mac-layer rate control: Attacks and defenses. Computer Networks.

  90. Atzori, L., Iera, A., & Morabito, G. (2010). The internet of things: A survey. Computer networks, 54(15), 2787–2805.

    MATH  Google Scholar 

  91. Kim, D.I., Le, L.B., & Hossain, E. (2008). Joint rate and power allocation for cognitive radios in dynamic spectrum access environment. In IEEE Transactions on Wireless Communications, (pp. 5517–5527).

  92. Wu, D., Ci, S., Luo, H., Zhang, W., & Zhang, J. (2012). Cross-layer rate adaptation for video communications over LTE networks. In Proceedings of GLOBECOM, (pp. 4834–4839). IEEE.

  93. Orakcal, C., & Starobinski, D. (2014). Jamming-resistant rate adaptation in Wi-Fi networks. Performance Evaluation, 75, 50–68.

    Google Scholar 

  94. Dinh, H. T., Lee, C., Niyato, D., & Wang, P. (2013). A survey of mobile cloud computing: Architecture, applications, and approaches. Wireless Communications and Mobile Computing, 13(18), 1587–1611.

    Google Scholar 

  95. Yin, W., Hu, P., Indulska, J., & Bialkowski, K. (2010). A method to improve adaptability of the minstrel mac rate control mechanism. In UIC’2010 Proceeding of IEEE International Conference on Ubiquitous Intelligence and Computing (submitted).

  96. Li, C.-Yu, Peng, Chunyi, Lu, Songwu, & Wang, Xinbing. (2012). Energy-based rate adaptation for 802.11n. In Proceedings of ACM Mobicom. (pp. 341–352).

  97. Li, C.-Y., Peng, C., Cheng, P., Lu, S., Wang, X., Ren, F., et al. (2016). An energy efficiency perspective on rate adaptation for 802.11 n nic. IEEE Transactions on Mobile Computing, 15(6), 1333–1347.

    Google Scholar 

  98. Jung, K.-H., Suh, Y.-J., & Yu, C.. (2013). Joint rate and voltage adaptation to save energy of software radios in underutilized WLAN. In Proceedings of WCNC, (pp. 163–168). IEEE.

  99. Khan, M. O., Dave, V., Chen, Y.-C., Jensen, O., Qiu, L., Bhartia, A., & Rallapalli, S. (2013). Model-driven energy-aware rate adaptation. In Proceedings of ACM MobiHoc, (pp. 217–226).

  100. Ucar, I., Donato, C., Serrano, P., Garcia-Saavedra, A., Azcorra, A., & Banchs, A. (2016). Revisiting 802.11 rate adaptation from energy consumption’s perspective. In Proceedings of ACM MSWiM, (pp. 27–34).

  101. Ghadimi, E., Calabrese, F. D., Peters, G., & Soldati, P. (2016). A reinforcement learning approach to power control and rate adaptation in cellular networks. Optimization and Control, 12, 1–7.

    Google Scholar 

Download references

Acknowledgements

The work is partially supported by the NSFC Project 61702542. We would like to thank reviewers for their comments and suggestions that led to improvements of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Yin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

See Table 6.

Table 6 Table of acronyms used in this paper

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, W., Hu, P., Indulska, J. et al. MAC-layer rate control for 802.11 networks: a survey. Wireless Netw 26, 3793–3830 (2020). https://doi.org/10.1007/s11276-020-02295-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-020-02295-2

Keywords

Navigation