Skip to main content

Advertisement

Log in

QoS aware cross layer paradigm for urban development applications in IoT

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Large number of services and heterogeneity of the objects have made Internet of Things (IoT) a complex paradigm. It is necessary to placate the requirements of quality of service metrics for IoT model of urban development. Rapid delivery and continuation of services to the customers without delay, is first and foremost requisite. Applications of IoT, require service centered IoT model which should be stable, scalable, energy efficient and re-configurable. This paper, proposes a service oriented cross layer solution for IoT–QoS architecture. In the three layer model, QoS module at the application layer exploits the optimization by exhausting the acquaintance of each component. Network layer deals with the issues of transmission of packets in energy efficient manner where stability plays a crucial role for the heterogeneous objects. Resources are allocated and reallocated to the requested services in optimal way at sensing layer. The proposed IoT–QoS model for urban development applications is capable of optimizing the traditional methods and encases the network lifetime by minimizing the energy consumption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Vermesan, O., Harrison, M., Vogt, H., Kalaboukas, K., & Tomasella, M. et al. (2009) The internet of things Strategic research roadmap. in Cluster of European Research Projects on the Internet of Things, CERP-IoT.

  2. Xia, F., Yang, L. T., Wang, L., & Vinel, A. (2012). Internet of things. International Journal of Communication Systems, 25(9), 1101–1102.

    Article  Google Scholar 

  3. Xu, L. D. (2011). Enterprise systems: State-of-the-art and future trends. IEEE Transactions on Industrial Informatics, 7(4), 630–640.

    Article  Google Scholar 

  4. Vermesan, O., Friess, P., Guillemin, P., Gusmeroli, S., Sundmaeker, H., Bassi, A., et al. (2011). Internet of things: global technological and societal trends (pp. 9–52). Aalborg: River Publishers.

    Google Scholar 

  5. Vlacheas, P., Giaffreda, R., Stavroulaki, V., Kelaidonis, D., Foteinos, V., Poulios, G., et al. (2013). Enabling smart cities through a cognitive management framework for the internet of things. IEEE Communications Magazine, 51(6), 102–111.

    Article  Google Scholar 

  6. Leu, J., Chen, C., & Hsu, K. (2013). Improving heterogeneous SOA-based IoT message stability by shortest processing time scheduling. IEEE Transactions on Services Computing., 1, 1. https://doi.org/10.1109/TSC.2013.30.

    Article  Google Scholar 

  7. Guo, B., Zhang, D., Wang, Z., Yu, Z., & Zhou, X. (2013). Opportunistic IoT: Exploring the harmonious interaction between human and the internet of things. Journal of Network and Computer Applications, 36(6), 1531–1539.

    Article  Google Scholar 

  8. Ding, Y., Jin, Y., Ren, L., & Hao, K. (2013). An intelligent self-organization scheme for the internet of things. IEEE Computing Intelligence Magazine, 8(3), 41–53.

    Article  Google Scholar 

  9. Filho, D. F. L., & Amazonas, J. R. (2013). TCNet: Trellis coded network Implementation of QoS-aware routing protocols in WSNs. IEEE Latin America Transactions, 11(3), 969–974.

    Article  Google Scholar 

  10. Hodges, S., Taylor, S., Villar, N., Scott, J., Bial, D., & Fischer, P. T. (2013). Prototyping connected devices for the internet of things. Computer, 46(2), 26–34.

    Article  Google Scholar 

  11. Li, S., Xu, L., Wang, X., & Wang, J. (2012). Integration of hybrid wireless networks in cloud services oriented enterprise information systems. Enterprise Information System, 6(2), 165–187.

    Article  Google Scholar 

  12. Liu, M., Li, Z., Guo, X., & Dutkiewicz, E. (2008). Performance analysis and optimization of handoff algorithms in heterogeneous wireless networks. IEEE Transactions on Mobile Computing, 7(7), 846–858.

    Article  Google Scholar 

  13. Al-Fagih, A. E., Al-Turjman, F. M., Alsalih, W. M., & Hassanein, H. S. (2013). A priced public sensing framework for heterogeneous IoT architectures. IEEE Transactions on Emerging Topics Computing, 1(1), 133–147.

    Article  Google Scholar 

  14. He, W., & Xu, L. (2014). Integration of distributed enterprise applications: A survey. IEEE Transactions on Industrial Informatics, 10(1), 35–42.

    Article  MathSciNet  Google Scholar 

  15. Ehsan, S., & Hamdaoui, B. (2012). A survey on energy-efficient routing techniques with QoS assurances for wireless multimedia sensor networks. Community Surveys and Tutorials, 14(2), 265–278.

    Article  Google Scholar 

  16. Wang, H., Zhang, X., Naït-Abdesselam, F., & Khokhar, A. (2010). Cross-layer optimized MAC to support multihop QoS routing for wireless sensor networks. IEEE Transactions on Vehicular Technology, 59(5), 2556–2563.

    Article  Google Scholar 

  17. Martínez, J. F., Garcí, A. B., Corredor, I., López, L., Hernández, V., & Dasilva, A. (2007). QoS in wireless sensor networks: survey and approach. in Proceedings of the 2007 Euro American conference on Telematics and information systems (p. 20). ACM.

  18. Kaur, N., & Singh, S. (2017). Optimized cost effective and energy efficient routing protocol for wireless body area networks. Ad Hoc Networks, 61, 65–84.

    Article  Google Scholar 

  19. Leyva-Mayorga, I., Pla, V., Martinez-Bauset, J., & Rivero-Angeles, M. E. (2017). A hybrid method for the QoS analysis and parameter optimization in time-critical random access wireless sensor networks. Journal of Network and Computer Applications, 83, 190–203.

    Article  Google Scholar 

  20. Sanchez, L., Muñoz, L., Galache, J. A., Sotres, P., Santana, J. R., Gutierrez, V., Ramdhany, R., Gluhak, A., Krco, S., Theodoridis, E. & Pfisterer, D. (2014). SmartSantander: IoT experimentation over a smart city testbed. Computer Networks 61, pp. 217–238, March 2014. 2014 IEEE World Forum on Internet of Things (WF-IoT), (pp. 375–376).

  21. Distefano, S., Merlino, G., & Puliafito, A. (2013). Application deployment for IoT: An infrastructure approach. in Global Communications Conference (GLOBECOM) (pp. 2798–2803). IEEE.

  22. De, S., Carrez, F., Reetz, E., Tönjes, R., & Wang, W. (2013) Test-enabled architecture for IoT service creation and provisioning, in lecture notes in computer science. in Galis, A., Gavras, A. (Eds.) (pp. 233 245–245). Berlin, Heidelberg: Springer.

  23. Li, F., Vögler, M., Claessens, M., & Dustdar, S. (2013). Efficient and Scalable IoT service delivery on cloud. in 2013 IEEE Sixth International Conference on Cloud Computing (CLOUD), (pp. 740–747).

  24. Katsaros, G., Wittern, E., Gray, B., & Tai, S. (2013). A service delivery framework to support opportunistic collaborations. in Service-oriented and cloud computing, ser. lecture notes in computer science. (pp. 4–18). Berlin, Heidelberg: Springer.

  25. Fantacci, R., Pecorella, T., Viti, R., & Carlini, C. (2014). Short paper: Overcoming IoT fragmentation through standard gateway architecture. in 2014 IEEE World forum on internet of things (WF-IoT), (pp. 181–182).

  26. Chen, D., Nixon, M., Lin, T., Han, S., Zhu, X., Mok, A., et al. (2011). Over the air provisioning of industrial wireless devices using elliptic curve cryptography. in 2011 IEEE international conference on computer science and automation engineering (CSAE), (pp. 594–600).

  27. Faisal, S., Javaid, N., Javaid, A., Khan, M. A., Bouk, S. H., & Khan, Z. A. (2013). Z-SEP: Zonal-stable election protocol for wireless sensor networks. arXiv:1303.5364.

  28. Kashaf, A., Javaid, N., Khan, Z. A., & Khan, I. A. (2012). TSEP: Threshold-sensitive stable election protocol for WSNs. in 2012 10th international conference on frontiers of information technology (FIT), (pp. 164–168). IEEE.

  29. Sheng, X., Tang, J., Xiao, X., & Xue, G. (2013). Sensing as a service: Challenges, solutions and future directions. IEEE Sensors Journal, 13(10), 3733–3741.

    Article  Google Scholar 

  30. Li, L., Li, S., & Zhao, S. (2014). QoS-aware scheduling of services-oriented internet of things. IEEE Transactions on Industrial Informatics, 10(2), 1497–1505.

    Article  MathSciNet  Google Scholar 

  31. Kamyabpour, N., & Hoang, D. B. (2011). Modeling overall energy consumption in Wireless Sensor Networks. arXiv:1112.5800.

  32. Rani, S., Malhotra, J., & Talwar, R. (2015). Energy efficient chain based cooperative routing protocol for WSN. Applied Soft Computing, 35, 386–397.

    Article  Google Scholar 

  33. Rani, S., Talwar, R., Malhotra, J., Ahmed, S. H., Sarkar, M., & Song, H. (2015). A novel scheme for an energy efficient Internet of Things based on wireless sensor networks. Sensors, 15(11), 28603–28626.

    Article  Google Scholar 

  34. Duan, R., Chen, X., & Xing, T. (2011). A QoS architecture for IOT. In Internet of Things (iThings/CPSCom). in IEEE 4th international conference on cyber, physical and social computing, (pp. 717–720), Dalian, China.

  35. Ming, Z., & Yan, M. (2012). A modeling and computational method for QoS in IOT. in IEEE 3rd international conference on in software engineering and service science (ICSESS) (pp. 275–279), Beijing, China.

  36. Cheng, B., Wang, M., Zhao, S., Zhai, Z., Zhu, D., & Chen, J. (2017). Situation-aware dynamic service coordination in an IoT environment. IEEE/ACM Transactions On Networking, 25(4), 2082–2095.

    Article  Google Scholar 

  37. Conti, M., Kaliyar, P., Rabbani, M. M., & Ranise, S. (2020). Attestation-enabled secure and scalable routing protocol for IoT networks. Ad Hoc Networks, 98, 102054.

    Article  Google Scholar 

Download references

Acknowledgements

The authors also would like to express their sincere thanks to Prof. Dr. Truong Khang Nguyen, Division of Computational Physics, Institute for Computational Science, Faculty of Electrical and Electronics Engineering, Ton Duc Thang University, Ho Chi Minh City, Vietnam for giving his value suggestion, comments and support to complete this work in effective manner.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shalli Rani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rani, S., Saravanakumar, N., Rajeyyagari, S. et al. QoS aware cross layer paradigm for urban development applications in IoT. Wireless Netw 26, 6203–6214 (2020). https://doi.org/10.1007/s11276-020-02430-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-020-02430-z

Keywords

Navigation