Skip to main content
Log in

Network traffic prediction based on INGARCH model

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

In this paper, we introduce the integer-valued generalized autoregressive conditional heteroscedasticity (INGARCH) as a network traffic prediction model. As the INGARCH is known as a non-linear analytical model that could capture the characteristics of network traffic such as Poisson packet arrival and long-range dependence property, INGARCH seems to be an adequate model for network traffic prediction. Based on the investigation for the traffic arrival process in various network topologies including IoT and VANET, we could confirm that assuming the Poisson process as packet arrival works for some networks and environments of networks. The prediction model is generated by estimating parameters of the INGARCH process and predicting the Poisson parameters of future-steps ahead process using the conditional maximum likelihood estimation method and prediction procedure, respectively. Its performance is compared with those of three different models; autoregressive integrated moving average, GARCH, and long short-term memory recurrent neural network. Anonymized passive traffic traces provided by the Center for Applied Internet Data Analysis are used in the experiment. Numerical results show that the proposed model predicts better than the three models in terms of measurements used in prediction models. Based on the study, we can conclude the followings: INGARCH can capture the characteristics of network traffic better than other statistic models, it is more tractable than neural networks (NNs) overcoming the black-box nature of NNs, and the performances of some statistical models are comparable or even superior to those of NNs, especially when the data is insufficient to apply deep NNs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zhan, M. F., & Elbiaze, H. (2009). Analysis and prediction of real network traffic. Journal of Networks, 4(9), 855–865.

    Google Scholar 

  2. Joshi, M. R. & Hadi, T. H. (2015). A review of network traffic analysis and prediction techniques (pp. 1–22). e-print arXiv:1507.05722.2015.

  3. Amiri, M., & Mohammad-Khanli, L. (2017). Survey on prediction models of applications for resources provisioning in Cloud. Journal of Network and Computer Applications, 82, 93–113.

    Article  Google Scholar 

  4. Chakraborty, D., Ashir, A., Suganuma, T., Keeni, G. M., Roy, T. K., & Shiratori, N. (2004). Self-similar and fractal nature of Internet traffic. International Journal of Network Management, 12(2), 119–129.

    Article  Google Scholar 

  5. Karagiannis, T., Molle, M., & Faloutsos, M. (2004). Long-range dependence ten years of Internet traffic modeling. IEEE Internet Computing, 8(5), 57–64.

    Article  Google Scholar 

  6. Cao, J., Cleveland, W. S., Lin, D., & Sun, D. X. (2001). On the nonstationarity of Internet traffic. In Proceedings of ACM SIGMETRICS (pp. 102–112).

  7. Hoßfeld, T., Metzger, F., & Heegaard, P. E. (2018). Traffic modeling for aggregated periodic IoT data. In Proceedings of ICIN (pp. 1–8).

  8. Koukoutsidis, I. & Siris, V. A. (2007). Modeling approximations for an IEEE 802.11 WLAN Under Poisson MAC-Level Arrivals. In Proceedings of networking (pp. 439–449).

  9. : Oh, Y. & Hwang, G. (2018). Spatial modelling and analysis of WLAN with Poisson point process. In Proceedings of QTNA (pp. 145–159).

  10. Guo, J., Zhang, Y., Chen, X., & Wang, Y. (2017). Spatial stochastic vehicle traffic modeling for VANETs. IEEE Transactions on Intelligent Transportation Systems, 99, 1–10.

    Google Scholar 

  11. Heath, R. W., Kountouris, M., & Bai, T. (2013). Modeling heterogeneous network interference using Poisson point processes. IEEE Transactions on Signal Processing, 61(16), 4114–4126.

    Article  MathSciNet  MATH  Google Scholar 

  12. Gulati, K., Evans, B. L., Andrews, J. G., & Tinsley, K. R. (2010). Statistics of co-channel interference in a field of Poisson and Poisson–Poisson clustered interferers. IEEE Transactions on Signal Processing, 58(12), 6207–6222.

    Article  MathSciNet  MATH  Google Scholar 

  13. Suarez, C. A. H., Parra, O. J. S., & Díaz, A. E. (2009). An ARIMA model for forecasting Wi-Fi data network traffic values. Revista Ingenieria E Investigacion, 29(2), 65–69.

    Google Scholar 

  14. Laner, M., Svoboda, P., & Rupp, M. (2013). Parsimonious fitting of long-range dependent network traffic using ARMA models. IEEE Communications Letters, 17(12), 2368–2371.

    Article  Google Scholar 

  15. Xu, S., & Zeng, B. (2014). Network traffic prediction model based on auto-regressive moving average. Journal of Networks, 9(3), 653–659.

    Article  Google Scholar 

  16. Zhou, D., Chen, S., & Dong, S. (2012). Network traffic prediction based on ARFIMA model. International Journal of Computer Science Issues, 9(6, 3), 106–111.

    Google Scholar 

  17. Jiang, D., & Hu, G. (2009). GARCH model-based large-scale IP traffic matrix estimation. IEEE Communications Letters, 13(1), 52–54.

    Article  MathSciNet  Google Scholar 

  18. Ntlangu, B., & Baghai-Wadji, A. (2017). Modelling network traffic using time series analysis: A Review. In Proceedings of BDIoT (pp. 209–215).

  19. Kim, S. (2011). Forecasting Internet traffic by using seasonal GARCH models. Journal of Communications and Networks, 13(6), 621–624.

    Article  Google Scholar 

  20. Chen, C., Hu, J., Meng, Q., & Zhang, Y. (2011). Short-time traffic flow prediction with ARIMA-GARCH Model. In Proceedings of IEEE IV (pp. 607–612).

  21. Zeng, D., Xu, J., Gu, J., Liu, L., & Xu, G. (2008) Short term traffic flow prediction using hybrid ARIMA and ANN models. In Proceedings of PEITS (pp. 621–625).

  22. Khashei, M., & Bijari, M. (2011). A novel hybridization of artificial neural networks and ARIMA models for time series forecasting. Applied Soft Computing, 11, 2664–2675.

    Article  Google Scholar 

  23. Babu, C. N., & Reddy, B. E. (2015). Performance comparison of four new ARIMA-ANN prediction models on Internet traffic data. Journal of Telecommunications and Information Technology, 1, 67–75.

    Google Scholar 

  24. Li, K. -L., Zhai, C. -J., & Xu, J. -M. (2017). Short-term traffic flow prediction using a methodology based on ARIMA and RBF-ANN. In Proceedings of CAC (pp. 2804–2807).

  25. Katris, C., & Daskalaki, S. (2015). Comparing forecasting approaches for Internet traffic. Expert Systems with Applications, 42, 1872–8183.

    Article  MATH  Google Scholar 

  26. Chabaa, S., Zeroual, A., & Antari, J. (2010). Identification and prediction of internet traffic using artificial neural networks. Journal of Intelligent Learning Systems and Applications, 2, 147–155.

    Article  Google Scholar 

  27. Luo, Y. (2015). Network traffic prediction based on LMD and neural network. In Proceedings of ICMMITA (pp. 371–374).

  28. Zhuo, Q., Li, Q., Yan, H., & Qi, Y. (2017). Long short-term memory neural network for network traffic prediction. In Proceedings of ISKE (pp. 1–6).

  29. Li, R., Zhao, Z., Zheng, J., Mei, C., Cai, Y., & Zhang, H. (2017). The learning and prediction of application-level traffic data in cellular networks. IEEE Transactions on Wireless Communications, 16(6), 3899–3912.

    Article  Google Scholar 

  30. Qiu, C., Zhang, Y., Feng, Z., Zhang, P., & Cui, S. (2018). Spatio-temporal wireless traffic prediction with recurrent neural network. IEEE Wireless Communications letters, 7(4), 554–557.

    Article  Google Scholar 

  31. Dalgkitsis, A., Louta, M., & Karetsos, G. T. (2018). Traffic forecasting in cellular networks using the LSTM RNN. In Proceedings of PCI (pp. 28–33).

  32. Alawe, I., Ksentini, A., Hadjadj-Aoul, Y., & Bertin, P. (2018). Improving traffic forecasting for 5G core network scalability: A machine learning approach. IEEE Network, 32(6), 42–49.

    Article  Google Scholar 

  33. Mozo, A., Ordozgoiti, B., & Gómez-Canaval, S. (2018). Forecasting short-term data center network traffic load with convolutional neural networks. PLoS ONE, 13(2), e0191939.

    Article  Google Scholar 

  34. Nie, L., Wang, X., Wan, L., Yu, S., Song, H., & Jiang, D. (2018). Network traffic prediction based on deep belief network and spatiotemporal compressive sensing in wireless mesh backbone networks. Wireless Communications and Mobile Computing, Article ID 1260860, 10 pages.

  35. Kim, M. (2019). Supervised learn-based DDoS attacks detection: Tuning hyperparameters. ETRI Journal, 41(5), 560–573.

    Article  Google Scholar 

  36. Chen, Z., Wen, J., & Geng, Y. (2016). Predicting future traffic using hidden Markov models. In Proceedings of IEEE ICNP (pp. 1–6).

  37. Maheshwari, S., Mahapatra, S., Kumar, C. S., & Vasu, K. (2013). A joint parametric prediction model for wireless internet traffic using Hidden Markov Model. Wireless Networks, 19(6), 1171–1185.

    Article  Google Scholar 

  38. Li, R., Zhao, Z., Zhou, X., Palicot, J., & Zhang, H. (2014). The prediction analysis of cellular radio access network traffic: From entropy theory to networking practice. IEEE Communications Magazine, 52(6), 234–240.

    Article  Google Scholar 

  39. Bayati, A., Nguyen, K., & Cheriet, M. (2018). Multiple-step-ahead traffic prediction in high-speed networks. IEEE Communications Letters, 22(12), 244–2450.

    Article  Google Scholar 

  40. Tran, Q. T., Li, H., & Trinh, Q. K. (2019). Cellular network traffic prediction using exponential smoothing methods. Journal of Information and Communications Technology, 18(1), 1–18.

    Article  Google Scholar 

  41. Iqbal, M. F., Zahid, M., Habib, D., & John, L. K. (2019). Efficient prediction of network traffic for real-time applications. Journal of Computer Networks and Communications, Article ID 4067135, 11 pages.

  42. Vanschoren, J. (2018). Meta-learning: A survey (pp. 1–29). e-print arXiv:1810.03548v1.

  43. Doukhan, P., Oppenheim, G., & Taqqu, M. (Eds.). (2003). Theory and applications of long-range dependence. Basel: Birkhäuser.

    MATH  Google Scholar 

  44. Maheu, J. (2007). Can GARCH models capture long-range dependence? Studies in Nonlinear Dynamics & Econometrics, 9(4), 1–41.

    MathSciNet  MATH  Google Scholar 

  45. Sun, W. Rachev, S. Z., & Fabozzi, F. (2008). Long-range dependence, fractal processes, and intra daily data. In D. Seese, C. Weinhardt, and F. Schlottmann (Eds.), Handbook on Information Technology in Finance (pp. 543–585).

  46. Wang, X., Smith-Miles, K., & Hyndman, R. J. (2009). Rule induction for forecasting method selection: Meta-learning the characteristics of univariate time series. Neurocomputing, 72(10), 2581–2594.

    Article  Google Scholar 

  47. Lemke, C., & Gabrys, B. (2010). Meta-learning for time series forecasting and forecast combination. Neurocomputing, 73(10), 2006–2016.

    Article  Google Scholar 

  48. Widodo, A. & Budi, I. (2013). Model selection using dimensionality reduction of time series characteristics. In Proceedings of ISF (pp. 1–8).

  49. Kück, M., Crone, S., & Freitag, M. (2016). Meta-learning with neural networks and landmarking for forecasting model selection—An empirical evaluation of different feature sets applied to industry data. In Proceedings of IJCNN (pp. 1499–1506).

  50. Talagala, T. S., Hyndman, R. J., & Athanasopoulos, G. (2018). Meta-learning how to forecast time series. Melbourne: Monash University.

    Google Scholar 

  51. Barak, S., Nasiri, M., & Rostamzadeh, M. (2019). Time series model selection with a meta-learning approach; evidence from a pool of forecasting algorithms (pp. 1–30). e-print arXiv:1908.08489v1.

  52. Afolabi, D., Guan, S.-U., Man, K. L., Wong, P. W. H., & Zhao, X. (2017). Hierarchical meta-learning in time series forecasting for improved interference-less machine learning. Symmetry, 9, 283.

    Article  Google Scholar 

  53. Quoreshi, A. M. M. S. (2014). A long-memory integer-valued time series model, INARFIMA, for financial application. Quantitative Finance, 14(12), 2225–2235.

    Article  MathSciNet  MATH  Google Scholar 

  54. Ferland, R., Latour, A., & Oraichi, D. (2006). Integer-valued GARCH process. Journal of Time Series Analysis, 27(6), 923–942.

    Article  MathSciNet  MATH  Google Scholar 

  55. Weiß, C. (2018). An introduction to discrete-valued time series. Wiley, Hoboken. https://doi.org/10.1002/9781119097013.

    Article  MATH  Google Scholar 

  56. Cui, Y., & Wu, R. (2016). On conditional maximum likelihood estimation for INGARCH(p, q) models. Statistics and Probability Letters, 118, 1–7.

    Article  MathSciNet  MATH  Google Scholar 

  57. Bollerslev, T., Chou, R. Y., & Kroner, K. F. (1992). ARCH modeling in finance: A review of the theory and empirical evidence. Journal of Econometrics, 52, 5–59.

    Article  MATH  Google Scholar 

  58. The CAIDA UCSD Anonymized Internet Traces—Avail: http://caida.org/data/passive/passive_dataset.xml.

  59. CAIDA Avail: http://www.caida.org/data/passive/trace_stats/.

Download references

Acknowledgements

The author would like to thank the editor and the anonymous reviewers for their constructive and valuable comments. Support for CAIDA’s Internet Traces is provided by the National Science Foundation, the US Department of Homeland Security, and CAIDA Members. This work was supported by the Mid-career Research Program and Basic Science Research Program through the NRF Grant funded by the MEST (NRF-2019R1A2C1002706, NRF-2016R1D1A1B03931037) and supported by the Korea University Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meejoung Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Proof of Theorem 1

Appendix: Proof of Theorem 1

Since

$$\hat{\lambda }_{t} (n) = w + \sum\limits_{i = 1}^{p} {\alpha_{i} E(\lambda_{t + n - i} |{\mathcal{F}}_{t} )} + \sum\limits_{j = 1}^{q} {\beta_{j} E(X_{t + n - j} |{\mathcal{F}}_{t} )} ,$$
(15)

\(E(\lambda_{t + n - i} |{\mathcal{F}}_{t} )\) and \(E(X_{t + n - j} |{\mathcal{F}}_{t} )\) are obtained as

$$\begin{aligned}E(\lambda_{t + n - i} |{\mathcal{F}}_{t} ) &= \left\{ {\begin{array}{*{20}l} {\lambda_{t + n - i} ,} \hfill & {{\text{if}}\;n - i < 0} \hfill \\ {\hat{\lambda }_{t} (n - i),} \hfill & {{\text{if}}\;n - i \ge 0} \hfill \\ \end{array} } \right.,\;{\text{and}}\\E(X_{t + n - j} |{\mathcal{F}}_{t} ) &= \left\{ {\begin{array}{*{20}l} {X_{t + n - j} ,} \hfill & {{\text{if}}\;n - j < 0} \hfill \\ {\hat{\lambda }_{t} (n - j),} \hfill & {{\text{if}}\;n - j \ge 0} \hfill \\ \end{array} } \right.,\end{aligned}$$
(16)

respectively, and the result follows.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, M. Network traffic prediction based on INGARCH model. Wireless Netw 26, 6189–6202 (2020). https://doi.org/10.1007/s11276-020-02431-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-020-02431-y

Keywords

Navigation