Skip to main content

Advertisement

Log in

POID: a passive all-optical inter-rack interconnect for data-centers

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

With the increase in demand for bandwidth-thirsty cloud-based services, bandwidth demands for rack-to-rack interconnect in data centers are increasing exponentially. In this paper, an optical interconnect architecture dubbed “POID” is proposed. The novel architecture is proposed using passive optical technology, wavelength division multiplexing, and innovative architectural concepts. The proposed architecture adequately supports the rack-to-rack traffic with latencies as low as few hundred nanoseconds while providing Tera bits per second throughput. The performance of the proposed architecture is evaluated through simulation studies and compared to other recent related data center interconnection networks from recent literature. The proposed POID architecture provides up to 10% improvement in throughput and up to about 82% reduction in latency compared to other comparative designs of data center interconnects using current optical fiber and switching technologies. The proposed PIOD incurs 22% power penalty compared to the existing best performing comparable designs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Chen, K., Singla, A., Singh, A., Ramachandran, K., Xu, L., Zhang, Y., et al. (2013). OSA: An optical switching architecture for data center networks with unprecedented flexibility. IEEE/ACM Transactions on Networking, 22(2), 498–511.

    Article  Google Scholar 

  2. Hong, Y., Hong, X., Chen, J., & He, S. (2017). Elastic all-optical multi-hop interconnection in data centers with adaptive spectrum allocation. Optics Communications, 383, 478–484.

    Article  Google Scholar 

  3. Kachris, C., Kanonakis, K., & Tomkos, I. (2013). Optical interconnection networks in data centers: Recent trends and future challenges. IEEE Communications Magazine, 51(9), 39–45.

    Article  Google Scholar 

  4. Liu, Y., Muppala, J. K., Veeraraghavan, M., Lin, D., & Hamdi, M. (2013). Data center network topologies: Current state-of-the-art. In Data center networks (pp. 7–14). Cham: Springer.

  5. Nagarajan, R., Bhoja, S., & Issenhuth, T. (2016). 100 Gbit/s, 120 km, PAM 4 based switch to switch, layer 2 silicon photonics based optical interconnects for datacenters. In 2016 IEEE hot chips 28 symposium (HCS) (pp. 1–17). IEEE Computer Society.

  6. Kamchevska, V., Medhin, A. K., Da Ros, F., Ye, F., Asif, R., Fagertun, A. M., et al. (2016). Experimental demonstration of multidimensional switching nodes for all-optical data center networks. Journal of Lightwave Technology, 34(8), 1837–1843.

    Article  Google Scholar 

  7. Tatum, J. A., Gazula, D., Graham, L. A., Guenter, J. K., Johnson, R. H., King, J., et al. (2015). VCSEL-based interconnects for current and future data centers. Journal of Lightwave Technology, 33(4), 727–732.

    Article  Google Scholar 

  8. Cao, Z., Proietti, R., & Yoo, S. J. B. (2015). Hi-LION: Hierarchical large-scale interconnection optical network with AWGRs. Journal of Optical Communications and Networking, 7(1), A97–A105.

    Article  Google Scholar 

  9. Farrington, N., Porter, G., Radhakrishnan, S., Bazzaz, H. H., Subramanya, V., Fainman, Y., et al. (2010). Helios: A hybrid electrical/optical switch architecture for modular data centers. In Proceedings of the ACM SIGCOMM 2010 conference (pp. 339–350).

  10. Wang, G., Andersen, D. G., Kaminsky, M., Papagiannaki, K., Ng, T. E., Kozuch, M., & Ryan, M. (2010). c-Through: Part-time optics in data centers. In Proceedings of the ACM SIGCOMM 2010 conference (pp. 327–338).

  11. Yeow, T. W., Law, K. E., & Goldenberg, A. (2001). MEMS optical switches. IEEE Communications magazine, 39(11), 158–163.

    Article  Google Scholar 

  12. Shakeri, A., Wang, X., Razo, M., Alabarce, M. G., Oki, E., Yamanaka, N., & Fumagalli, A. (2018). Modeling the effect of wavelength selective switch latency on optical flow switching performance. Journal of Optical Communications and Networking, 10(12), 924–935.

    Article  Google Scholar 

  13. Leijtens, X. J., Kuhlow, B., & Smit, M. K. (2006). Arrayed waveguide gratings. In Wavelength filters in fibre optics (pp. 125–187). Berlin: Springer.

  14. Chen, S. L., & Na, Y. C. (2016). U.S. Patent No. 9,239,507. Washington, DC: U.S. Patent and Trademark Office.

  15. Kanamori, H. (2011). Passive optical components and their applications to FTTH networks. SEI Technical Review, 73, 15.

    Google Scholar 

  16. Ye, X., Yin, Y., Yoo, S. B., Mejia, P., Proietti, R., & Akella, V. (2010). DOS: A scalable optical switch for datacenters. In Proceedings of the 6th ACM/IEEE symposium on architectures for networking and communications systems (pp. 1–12).

  17. Hong, Y., Hong, X., He, S., & Chen, J. (2015). Flex-grid all-optical interconnect supporting transparent multi-hop connection in data centers. In Progress in electromagnetics research symposium (pp. 1284–1288). Electromagnetics Academy.

  18. Kodi, A. K., & Louri, A. (2004). Rapid: Reconfigurable and scalable all-photonic interconnect for distributed shared memory multiprocessors. Journal of Lightwave Technology, 22(9), 2101.

    Article  Google Scholar 

  19. Kodi, A. K., & Louri, A. (2006). RAPID for high-performance computing systems: architecture and performance evaluation. Applied Optics, 45(25), 6326–6334.

    Article  Google Scholar 

  20. Haglund, E., Westbergh, P., Gustavsson, J. S., Haglund, E. P., & Larsson, A. (2015). High-speed VCSELs with strong confinement of optical fields and carriers. Journal of Lightwave Technology, 34(2), 269–277.

    Article  Google Scholar 

  21. Tsai, C. T., Peng, C. Y., Wu, C. Y., Leong, S. F., Kao, H. Y., Wang, H. Y., et al. (2017). Multi-mode VCSEL chip with high-indium-density InGaAs/AlGaAs quantum-well pairs for QAM-OFDM in multi-mode fiber. IEEE Journal of Quantum Electronics, 53(4), 1–8.

    Article  Google Scholar 

  22. Optronics Illc, P. Princeton Optronics secures US $25 m for high-power tunable laser.

  23. O'donnell, A. J., Iriarte, S., Murphy, M. J., Lyden, C. G., Casey, G., & English, E. E. (2014). U.S. Patent No. 8,853,799. Washington, DC: U.S. Patent and Trademark Office.

  24. Bickham, S. R. (2016). Multimode and single-mode fibers for data center and high-performance computing applications. In Optical interconnects XVI (Vol. 9753, p. 97530R). International Society for Optics and Photonics.

  25. Leibowitz, Z. B. (1990). Career development works overtime at corning, Inc. Personnel (AMA), 67(4), 38.

    Google Scholar 

  26. Agrawal, G. P. (2012). Fiber-optic communication systems (Vol. 222). Hoboken: Wiley.

    Google Scholar 

  27. Stern, T. E., & Bala, K. (1999). Multiwavelength optical networks: A layered approach. Boston: Addison-Wesley Longman Publishing Co., Inc.

    Google Scholar 

  28. Bauters, J., Roth, J. E., & Ramaswamy, A. (2016). U.S. Patent No. 9,366,819. Washington, DC: U.S. Patent and Trademark Office.

  29. De Heyn, P., Kopp, V. I., Srinivasan, S. A., Verheyen, P., Park, J., Wlodawski, M. S., et al. (2017). Ultra-dense 16 × 56 Gb/s NRZ GeSi EAM-PD arrays coupled to multicore fiber for short-reach 896 Gb/s optical links. In Optical fiber communication conference (pp. Th1B-7). Optical Society of America.

  30. Gao, Y., Cansizoglu, H., Ghandiparsi, S., Bartolo-Perez, C., Devine, E. P., Yamada, T., et al. (2017). High speed surface illuminated Si photodiode using microstructured holes for absorption enhancements at 900–1000 nm wavelength. ACS Photonics, 4(8), 2053–2060.

    Article  Google Scholar 

  31. Liu, S., Wang, B., Cui, B., & Sun, L. (2008). Deep desulfurization of diesel oil oxidized by Fe(VI) systems. Fuel, 87(3), 422–428.

    Article  Google Scholar 

  32. Benson, T., Akella, A., & Maltz, D. A. (2010). Network traffic characteristics of data centers in the wild. In Proceedings of the 10th ACM SIGCOMM conference on Internet measurement (pp. 267–280).

  33. Djordjevic, I., Ryan, W., & Vasic, B. (2010). Coding for optical channels. Berlin: Springer.

    Book  Google Scholar 

  34. Pepeljugoski, P., Doany, F., Kuchta, D., Schares, L., Schow, C., Ritter, M., & Kash, J. (2007). Data center and high performance computing interconnects for 100 Gb/s and beyond. In Optical fiber communication conference (p. OMR4). Optical Society of America.

  35. Sangirov, J., Joo, G. C., Choi, J. S., Kim, D. H., Yoo, B. S., Ukaegbu, I. A., et al. (2014). 40 Gb/s optical subassembly module for a multi-channel bidirectional optical link. Optics Express, 22(2), 1768–1783.

    Article  Google Scholar 

  36. Shih, T. T., Chi, Y. C., Wang, R. N., Wu, C. H., Huang, J. J., Jou, J. J., et al. (2017). Efficient heat dissipation of uncooled 400-Gbps (16 × 25-Gbps) optical transceiver employing multimode VCSEL and PD arrays. Scientific Reports, 7, 46608.

    Article  Google Scholar 

  37. Xu, M., Liu, C., & Subramaniam, S. (2016). PODCA: A passive optical data center architecture. In 2016 IEEE international conference on communications (ICC) (pp. 1–6). IEEE.

  38. Gheisari, M., Alzubi, J., Zhang, X., Kose, U., & Saucedo, J. A. M. (2020). A new algorithm for optimization of quality of service in peer to peer wireless mesh networks. Wireless Networks, 26(7), 4965–4973.

    Article  Google Scholar 

  39. Amiri, I. S., Palai, G., Alzubi, J. A., & Nayak, S. R. (2020). Chip to chip communication through the photonic integrated circuit: A new paradigm to optical VLSI. Optik, 202, 163588.

    Article  Google Scholar 

  40. Latif, G., Saravanakumar, N., Alghazo, J., Bhuvaneswari, P., Shankar, K., & Butt, M. O. (2020). Scheduling and resources allocation in network traffic using multiobjective, multiuser joint traffic engineering. Wireless Networks, 26(8), 5951–5963.

  41. Alzubi, J. A., Manikandan, R., Alzubi, O. A., Qiqieh, I., Rahim, R., Gupta, D., & Khanna, A. (2020). Hashed needham schroeder industrial IoT based cost optimized deep secured data transmission in cloud. Measurement, 150, 107077.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Runna Alghazo for proofreading the manuscript and editing to eliminate language issues and enhance readability wherever warranted.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ghazanfar Latif.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roychowdhury, P., Alghazo, J.M. & Latif, G. POID: a passive all-optical inter-rack interconnect for data-centers. Wireless Netw 27, 781–793 (2021). https://doi.org/10.1007/s11276-020-02476-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-020-02476-z

Keywords

Navigation