Abstract
With the increase in demand for bandwidth-thirsty cloud-based services, bandwidth demands for rack-to-rack interconnect in data centers are increasing exponentially. In this paper, an optical interconnect architecture dubbed “POID” is proposed. The novel architecture is proposed using passive optical technology, wavelength division multiplexing, and innovative architectural concepts. The proposed architecture adequately supports the rack-to-rack traffic with latencies as low as few hundred nanoseconds while providing Tera bits per second throughput. The performance of the proposed architecture is evaluated through simulation studies and compared to other recent related data center interconnection networks from recent literature. The proposed POID architecture provides up to 10% improvement in throughput and up to about 82% reduction in latency compared to other comparative designs of data center interconnects using current optical fiber and switching technologies. The proposed PIOD incurs 22% power penalty compared to the existing best performing comparable designs.








Similar content being viewed by others
References
Chen, K., Singla, A., Singh, A., Ramachandran, K., Xu, L., Zhang, Y., et al. (2013). OSA: An optical switching architecture for data center networks with unprecedented flexibility. IEEE/ACM Transactions on Networking, 22(2), 498–511.
Hong, Y., Hong, X., Chen, J., & He, S. (2017). Elastic all-optical multi-hop interconnection in data centers with adaptive spectrum allocation. Optics Communications, 383, 478–484.
Kachris, C., Kanonakis, K., & Tomkos, I. (2013). Optical interconnection networks in data centers: Recent trends and future challenges. IEEE Communications Magazine, 51(9), 39–45.
Liu, Y., Muppala, J. K., Veeraraghavan, M., Lin, D., & Hamdi, M. (2013). Data center network topologies: Current state-of-the-art. In Data center networks (pp. 7–14). Cham: Springer.
Nagarajan, R., Bhoja, S., & Issenhuth, T. (2016). 100 Gbit/s, 120 km, PAM 4 based switch to switch, layer 2 silicon photonics based optical interconnects for datacenters. In 2016 IEEE hot chips 28 symposium (HCS) (pp. 1–17). IEEE Computer Society.
Kamchevska, V., Medhin, A. K., Da Ros, F., Ye, F., Asif, R., Fagertun, A. M., et al. (2016). Experimental demonstration of multidimensional switching nodes for all-optical data center networks. Journal of Lightwave Technology, 34(8), 1837–1843.
Tatum, J. A., Gazula, D., Graham, L. A., Guenter, J. K., Johnson, R. H., King, J., et al. (2015). VCSEL-based interconnects for current and future data centers. Journal of Lightwave Technology, 33(4), 727–732.
Cao, Z., Proietti, R., & Yoo, S. J. B. (2015). Hi-LION: Hierarchical large-scale interconnection optical network with AWGRs. Journal of Optical Communications and Networking, 7(1), A97–A105.
Farrington, N., Porter, G., Radhakrishnan, S., Bazzaz, H. H., Subramanya, V., Fainman, Y., et al. (2010). Helios: A hybrid electrical/optical switch architecture for modular data centers. In Proceedings of the ACM SIGCOMM 2010 conference (pp. 339–350).
Wang, G., Andersen, D. G., Kaminsky, M., Papagiannaki, K., Ng, T. E., Kozuch, M., & Ryan, M. (2010). c-Through: Part-time optics in data centers. In Proceedings of the ACM SIGCOMM 2010 conference (pp. 327–338).
Yeow, T. W., Law, K. E., & Goldenberg, A. (2001). MEMS optical switches. IEEE Communications magazine, 39(11), 158–163.
Shakeri, A., Wang, X., Razo, M., Alabarce, M. G., Oki, E., Yamanaka, N., & Fumagalli, A. (2018). Modeling the effect of wavelength selective switch latency on optical flow switching performance. Journal of Optical Communications and Networking, 10(12), 924–935.
Leijtens, X. J., Kuhlow, B., & Smit, M. K. (2006). Arrayed waveguide gratings. In Wavelength filters in fibre optics (pp. 125–187). Berlin: Springer.
Chen, S. L., & Na, Y. C. (2016). U.S. Patent No. 9,239,507. Washington, DC: U.S. Patent and Trademark Office.
Kanamori, H. (2011). Passive optical components and their applications to FTTH networks. SEI Technical Review, 73, 15.
Ye, X., Yin, Y., Yoo, S. B., Mejia, P., Proietti, R., & Akella, V. (2010). DOS: A scalable optical switch for datacenters. In Proceedings of the 6th ACM/IEEE symposium on architectures for networking and communications systems (pp. 1–12).
Hong, Y., Hong, X., He, S., & Chen, J. (2015). Flex-grid all-optical interconnect supporting transparent multi-hop connection in data centers. In Progress in electromagnetics research symposium (pp. 1284–1288). Electromagnetics Academy.
Kodi, A. K., & Louri, A. (2004). Rapid: Reconfigurable and scalable all-photonic interconnect for distributed shared memory multiprocessors. Journal of Lightwave Technology, 22(9), 2101.
Kodi, A. K., & Louri, A. (2006). RAPID for high-performance computing systems: architecture and performance evaluation. Applied Optics, 45(25), 6326–6334.
Haglund, E., Westbergh, P., Gustavsson, J. S., Haglund, E. P., & Larsson, A. (2015). High-speed VCSELs with strong confinement of optical fields and carriers. Journal of Lightwave Technology, 34(2), 269–277.
Tsai, C. T., Peng, C. Y., Wu, C. Y., Leong, S. F., Kao, H. Y., Wang, H. Y., et al. (2017). Multi-mode VCSEL chip with high-indium-density InGaAs/AlGaAs quantum-well pairs for QAM-OFDM in multi-mode fiber. IEEE Journal of Quantum Electronics, 53(4), 1–8.
Optronics Illc, P. Princeton Optronics secures US $25 m for high-power tunable laser.
O'donnell, A. J., Iriarte, S., Murphy, M. J., Lyden, C. G., Casey, G., & English, E. E. (2014). U.S. Patent No. 8,853,799. Washington, DC: U.S. Patent and Trademark Office.
Bickham, S. R. (2016). Multimode and single-mode fibers for data center and high-performance computing applications. In Optical interconnects XVI (Vol. 9753, p. 97530R). International Society for Optics and Photonics.
Leibowitz, Z. B. (1990). Career development works overtime at corning, Inc. Personnel (AMA), 67(4), 38.
Agrawal, G. P. (2012). Fiber-optic communication systems (Vol. 222). Hoboken: Wiley.
Stern, T. E., & Bala, K. (1999). Multiwavelength optical networks: A layered approach. Boston: Addison-Wesley Longman Publishing Co., Inc.
Bauters, J., Roth, J. E., & Ramaswamy, A. (2016). U.S. Patent No. 9,366,819. Washington, DC: U.S. Patent and Trademark Office.
De Heyn, P., Kopp, V. I., Srinivasan, S. A., Verheyen, P., Park, J., Wlodawski, M. S., et al. (2017). Ultra-dense 16 × 56 Gb/s NRZ GeSi EAM-PD arrays coupled to multicore fiber for short-reach 896 Gb/s optical links. In Optical fiber communication conference (pp. Th1B-7). Optical Society of America.
Gao, Y., Cansizoglu, H., Ghandiparsi, S., Bartolo-Perez, C., Devine, E. P., Yamada, T., et al. (2017). High speed surface illuminated Si photodiode using microstructured holes for absorption enhancements at 900–1000 nm wavelength. ACS Photonics, 4(8), 2053–2060.
Liu, S., Wang, B., Cui, B., & Sun, L. (2008). Deep desulfurization of diesel oil oxidized by Fe(VI) systems. Fuel, 87(3), 422–428.
Benson, T., Akella, A., & Maltz, D. A. (2010). Network traffic characteristics of data centers in the wild. In Proceedings of the 10th ACM SIGCOMM conference on Internet measurement (pp. 267–280).
Djordjevic, I., Ryan, W., & Vasic, B. (2010). Coding for optical channels. Berlin: Springer.
Pepeljugoski, P., Doany, F., Kuchta, D., Schares, L., Schow, C., Ritter, M., & Kash, J. (2007). Data center and high performance computing interconnects for 100 Gb/s and beyond. In Optical fiber communication conference (p. OMR4). Optical Society of America.
Sangirov, J., Joo, G. C., Choi, J. S., Kim, D. H., Yoo, B. S., Ukaegbu, I. A., et al. (2014). 40 Gb/s optical subassembly module for a multi-channel bidirectional optical link. Optics Express, 22(2), 1768–1783.
Shih, T. T., Chi, Y. C., Wang, R. N., Wu, C. H., Huang, J. J., Jou, J. J., et al. (2017). Efficient heat dissipation of uncooled 400-Gbps (16 × 25-Gbps) optical transceiver employing multimode VCSEL and PD arrays. Scientific Reports, 7, 46608.
Xu, M., Liu, C., & Subramaniam, S. (2016). PODCA: A passive optical data center architecture. In 2016 IEEE international conference on communications (ICC) (pp. 1–6). IEEE.
Gheisari, M., Alzubi, J., Zhang, X., Kose, U., & Saucedo, J. A. M. (2020). A new algorithm for optimization of quality of service in peer to peer wireless mesh networks. Wireless Networks, 26(7), 4965–4973.
Amiri, I. S., Palai, G., Alzubi, J. A., & Nayak, S. R. (2020). Chip to chip communication through the photonic integrated circuit: A new paradigm to optical VLSI. Optik, 202, 163588.
Latif, G., Saravanakumar, N., Alghazo, J., Bhuvaneswari, P., Shankar, K., & Butt, M. O. (2020). Scheduling and resources allocation in network traffic using multiobjective, multiuser joint traffic engineering. Wireless Networks, 26(8), 5951–5963.
Alzubi, J. A., Manikandan, R., Alzubi, O. A., Qiqieh, I., Rahim, R., Gupta, D., & Khanna, A. (2020). Hashed needham schroeder industrial IoT based cost optimized deep secured data transmission in cloud. Measurement, 150, 107077.
Acknowledgements
The authors would like to thank Dr. Runna Alghazo for proofreading the manuscript and editing to eliminate language issues and enhance readability wherever warranted.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Roychowdhury, P., Alghazo, J.M. & Latif, G. POID: a passive all-optical inter-rack interconnect for data-centers. Wireless Netw 27, 781–793 (2021). https://doi.org/10.1007/s11276-020-02476-z
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11276-020-02476-z