Skip to main content
Log in

A compact coupler design using meandered line compact microstrip resonant cell (MLCMRC) and bended lines

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

In this paper, a novel branch-line coupler using meandered line compact microstrip resonant cell (MLCMRC) and bended lines is proposed. The presented coupler works at 0.9 GHz, with good specifications. The measured values of S12 and S13 at 0.9 GHz are 3.2 dB and 3.3 dB, respectively, which show better than 0.3 dB insertion loss in the pass band. The measured value of S14 is better than 36 dB and S11 is better than 31 dB. The proposed design can eliminate 3rd and 5th harmonic with high suppression level (more than 40 dB) and reduce the size of the circuit more than 64% compared to the conventional branch-line coupler. The presented coupler has a very simple structure, which can be used in modern communication applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Pozar, D. M. (2011). Microwave Engineering. New York: Wiley.

    Google Scholar 

  2. Alshamaileh, K. A., Devabhaktuni, V. K., & Dib, N. I. (2015). Impedance-varying broadband 90° branch-line coupler with arbitrary coupling levels and higher order harmonic suppression. IEEE Transactions on Components, Packaging and Manufacturing Technology, 5(10), 1507–1515.

    Article  Google Scholar 

  3. Tsiropoulou, E. E., Baras, J. S., Papavassiliou, S., & Sinha, S. (2017). RFID-based smart parking management system. Cyber-Physical Systems, 3(1–4), 22–41.

    Article  Google Scholar 

  4. Elhefnawy, M., & Ismail, W. (2009). A microstrip antenna array for indoor wireless dynamic environments. IEEE Transactions on Antennas and Propagation, 57(12), 3998–4002.

    Article  Google Scholar 

  5. Kurt, E., & Palamutçuoğullari, O. (2007). An adaptive feed forward amplifier application for 5.8 GHz. Turkish Journal of Electrical Engineering & Computer Sciences, 14(3), 437–443.

    Google Scholar 

  6. Lai, Y. A., Su, C. C., Hou, J. A., Lin, C. M., & Wang, Y. H. (2009). Implementation of a quadrature hybrid for miniature mixer application. Microwave and Optical Technology Letters, 51(8), 1843–1845.

    Article  Google Scholar 

  7. Bostan, Ö., Aydoğmuş, H. U., & Topaloğlu, S. (2016). Design of a low-power, low-cost UHF RFID reader module. Turkish Journal of Electrical Engineering & Computer Sciences, 24(4), 2747–2755.

    Article  Google Scholar 

  8. Qamar, Z., Zheng, S. Y., Chan, W. S., & Ho, D. (2018). Coupling coefficient reconfigurable wideband branch-line coupler topology with harmonic suppression. IEEE Transactions on Microwave Theory and Techniques, 66(4), 1912–1920.

    Article  Google Scholar 

  9. Jamshidi, M., Lalbakhsh, A., Lotfi, S., Siahkamari, H., Mohamadzade, B., & Jalilian, J. (2020). A neuro-based approach to designing a Wilkinson power divider. International Journal of RF and Microwave Computer-Aided Engineering, 30(3), e22091.

    Article  Google Scholar 

  10. Dwari, S., & Sanyal, S. (2006). Size reduction and harmonic suppression of microstrip branch-line coupler using defected ground structure. Microwave and Optical Technology Letters, 48(10), 1966–1969.

    Article  Google Scholar 

  11. Mondal, P., & Chakrabarty, A. (2009). Design of miniaturised branch-line and rat-race hybrid couplers with harmonics suppression. IET Microwaves, Antennas & Propagation, 3(1), 109–116.

    Article  Google Scholar 

  12. Yu, W., Rao, Y., Qian, H. J., & Luo, X. (2020). Reflectionless Filtering 90° Coupler Using Stacked Cross Coupled-Line and Loaded Cross-Stub. IEEE Microwave and Wireless Components Letters, 30(5), 481–484.

    Article  Google Scholar 

  13. Seko, M. H., & Correra, F. S. (2019). Dual-band branch-line coupler with shorted stepped-impedance stubs arranged in a Π-shaped topology. Microwave and Optical Technology Letters, 61(5), 1154–1160.

    Article  Google Scholar 

  14. Zhang, J., & Sun, X. W. (2008). Harmonic suppression of branch-line and rat-race coupler using complementary spilt ring resonators (CSRR) cell. Progress in Electromagnetics Research, 2, 73–79.

    Article  Google Scholar 

  15. Gu, J., & Sun, X. (2005). Miniaturization and harmonic suppression rat-race coupler using C-SCMRC resonators with distributive equivalent circuit. IEEE Microwave and Wireless Components Letters, 15(12), 880–882.

    Article  Google Scholar 

  16. Hou, J. A., & Wang, Y. H. (2010). Design of Compact 90˚ and 180˚ Couplers With Harmonic Suppression Using Lumped-Element Bandstop Resonators. IEEE Transactions on Microwave Theory and Techniques, 58(11), 2932–2939.

    Article  Google Scholar 

  17. Naderi, M., & Abbasi, H. (2018). Design of compact microstrip branch line coupler using semi-circular and rectangular resonators with wide range suppressed harmonics. AEU-International Journal of Electronics and Communications, 84, 171–176.

    Article  Google Scholar 

  18. Kumar, M., Islam, S. N., Sen, G., Parui, S. K., & Das, S. (2019). Design of compact Wilkinson power divider and branch line coupler using hairpin based line. AEU-International Journal of Electronics and Communications, 110, 152825.

    Article  Google Scholar 

  19. Kumar, K. P., & Karthikeyan, S. S. (2015). Wideband three section branch line coupler using triple open complementary split ring resonator and open stubs. AEU-International Journal of Electronics and Communications, 69(10), 1412–1416.

    Article  Google Scholar 

  20. Chun, Y. H., & Hong, J. S. (2006). Compact wide-band branch-line hybrids. IEEE Transactions on Microwave Theory and Techniques, 54(2), 704–709.

    Article  MathSciNet  Google Scholar 

  21. Beigizadeh, M., Dehghani, R., & Nabavi, A. (2017). Analysis and design of a lumped-element hybrid coupler using limited quality factor of components. AEU-International Journal of Electronics and Communications, 82, 312–320.

    Article  Google Scholar 

  22. Shao, W., He, J., & Wang, B. Z. (2010). Compact rat-race ring coupler with capacitor loading. Microwave and Optical Technology Letters, 52(1), 7–9.

    Article  Google Scholar 

  23. Chen, A., Zhuang, Y., Zhou, J., Huang, Y., & Xing, L. (2018). Design of a broadband Wilkinson power divider with wide range tunable bandwidths by adding a pair of capacitors. IEEE Transactions on Circuits and Systems II: Express Briefs, 66(4), 567–571.

    Article  Google Scholar 

  24. Cheng, K. K., & Ip, W. C. (2010). A novel power divider design with enhanced spurious suppression and simple structure. IEEE Transactions on Microwave Theory and Techniques, 58(12), 3903–3908.

    Google Scholar 

  25. Sun, K. O., Ho, S. J., Yen, C. C., & Van Der Weide, D. (2005). A compact branch-line coupler using discontinuous microstrip lines. IEEE Microwave and Wireless Components Letters, 15(8), 519–520.

    Article  Google Scholar 

  26. Zhang, J., Tao, J., Zong, B., & Zhou, C. (2015). Compact branch-line coupler using uni-planar spiral based CRLH-TL. Progress In Electromagnetics Research, 52, 113–119.

    Article  Google Scholar 

  27. Kumar, K. P., Barik, R. K., & Karthikeyan, S. S. (2016). A novel two section branch line coupler employing different transmission line techniques. AEU-International Journal of Electronics and Communications, 70(5), 738–742.

    Article  Google Scholar 

  28. Choi, K. S., Yoon, K. C., Lee, J. Y., Lee, C. K., Kim, S. C., Kim, K. B., & Lee, J. C. (2014). Compact branch-line coupler with harmonics suppression using meander T-shaped line. Microwave and Optical Technology Letters, 56(6), 1382–1384.

    Article  Google Scholar 

  29. Muraguchi, M., Yukitake, T., & Naito, Y. (1983). Optimum design of 3-dB branch-line couplers using microstrip lines. IEEE Transactions on Microwave Theory and Techniques, 31(8), 674–678.

    Article  Google Scholar 

  30. Kurgan, P., & Kitliński, M. (2009). Novel doubly perforated broadband microstrip branch-line couplers. Microwave and Optical Technology Letters, 51(9), 2149–2152.

    Article  Google Scholar 

  31. Jung, Y. B. (2014). Wideband branchline coupler using symmetrical four-strip interdigitated coupler. Electronics letters, 50(6), 452–454.

    Article  Google Scholar 

  32. Kim, J. S., & Kong, K. B. (2010). Compact branch-line coupler for harmonic suppression. Progress In Electromagnetics Research, 16, 233–239.

    Article  Google Scholar 

  33. Sung, Y. J., Ahn, C. S., & Kim, Y. S. (2004). Size reduction and harmonic suppression of rat-race hybrid coupler using defected ground structure. IEEE Microwave and Wireless Components Letters, 14(1), 7–9.

    Article  Google Scholar 

  34. Chudzik, M., Arnedo, I., Lujambio, A., Arregui, I., Teberio, F., Laso, M. A. G., & Lopetegi, T. (2011). Microstrip coupled-line directional coupler with enhanced coupling based on EBG concept. Electronics Letters, 47(23), 1284–1286.

    Article  Google Scholar 

  35. Eom, D. S., Byun, J., & Lee, H. Y. (2009). Multilayer substrate integrated waveguide four-way out-of-phase power divider. IEEE Transactions on Microwave Theory and Techniques, 57(12), 3469–3476.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Kermanshah Branch, Islamic Azad University for the financial support of this research project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sobhan Roshani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roshani, S., Roshani, S. A compact coupler design using meandered line compact microstrip resonant cell (MLCMRC) and bended lines. Wireless Netw 27, 677–684 (2021). https://doi.org/10.1007/s11276-020-02484-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-020-02484-z

Keywords

Navigation