Skip to main content
Log in

Utility optimization of grouping-based uplink OFDMA random access for the next generation WLANs

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

In this paper, a grouping-based uplink orthogonal frequency division multiple access (OFDMA) random access method is studied which can improve users’ satisfaction in the next generation wireless local area networks (WLANs). The next generation WLANs standard, IEEE 802.11ax introduces a random access mechanism, uplink OFDMA random access (UORA), to allow users to access channel randomly. Although UORA has the advantages of low signaling overhead, no need to report uplink transmission requirements, it does not have any characteristics to improve users’ satisfaction. Because the AP can’t allocate resources to users adopting UORA, some users’ quality of experience (QoE) will decline greatly. In this paper, a grouping-based UORA (G-UORA) method is proposed. The AP determines the number of groups, and then clusters users to different groups according to their utility. Then, the AP assigns resources to these groups to maximize the total utility of all users. We present a theoretical utility prediction model of G-UORA and propose the corresponding resource allocation algorithm based on utility. According to simulation results, the algorithm achieves better users’ satisfaction and fairness than the traditional UORA mechanism in IEEE 802.11ax and the user utility gain is 1.6 times. Therefore, the proposed method has greater practical significance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. IEEE. IEEE 802.11ax (D3.0) Draft Standard for Information technology Telecommunications and information exchange between systems Local and metropolitan area networks Specific requirements-Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications (2018).

  2. Qu, Q., Li, B., Yang, M., Yan, Z., Yang, A., Deng, D.-J., & Chen, K.-C. (2019). Survey and performance evaluation of the upcoming next generation WLANs standard -IEEE 802.11ax (accepted).

  3. Deng, D., Lien, S., Lee, J., & Chen, K. (2016). On quality-of-service provisioning in IEEE 802.11ax WLANs. IEEE Access, 4, 6086–6104.

    Article  Google Scholar 

  4. Lanante, L., Uwai, H. O. T., Nagao, Y., Kurosaki, M., & Ghosh, C. (2017). Performance analysis of the 802.11ax UL OFDMA random access protocol in dense networks. In 2017 IEEE international conference on communications (ICC) (pp. 1–6).

  5. Uwai, T., Miyamoto, T., Nagao, Y., Lanante, L., Kurosaki, M., & Ochi, H. (2016). Adaptive backoff mechanism for OFDMA random access with finite service period in IEEE 802.11ax. In 2016 IEEE conference on standards for communications and networking (CSCN) (pp. 1–6).

  6. Yang, A., Li, B., Yang, M., & Yan, Z. (Nov 2019). Concept and analysis of capacity entropy for uplink multi-user media access control for the next-generation WLANs. Mobile Networks and Applications, 24(5), 1572–1586.

  7. Chen, D. R., & Zhang, Y. J. (2009). A two-level medium access framework for exploiting multi-user diversity in multi-rate IEEE 802.11 wireless LANs. IEEE Transactions on Wireless Communications, 8(10), 5144–5154.

    Article  Google Scholar 

  8. Babich, F., Comisso, M., & Dorni, A. (2011). Multi-packet communication in 802.11 networks: A MAC/PHY backward compatible solution. In 2011 IEEE global telecommunications conference - GLOBECOM 2011 (pp. 1–5).

  9. Choi, N., Seok, Y., & Kwon, T. (2013). Exploiting multi-user diversity for uplink throughput in IEEE 802.11 WLANs. IEEE Communications Letters, 17(9), 1710–1713.

    Article  Google Scholar 

  10. Lee, Y., & Wu, W. (2018). A multi-user beamforming scheme for uplink wireless LAN. In 2018 International symposium on intelligent signal processing and communication systems (ISPACS) (pp. 173–178).

  11. Qu, Q., Li, B., Yang, M., & Yan, Z. (2015). An OFDMA based concurrent multiuser MAC for upcoming IEEE 802.11ax. In 2015 IEEE wireless communications and networking conference workshops (WCNCW) (pp. 136–141).

  12. Er-Rahmadi, B., Ksentini, A., & Meddour, D.-E. (2016). Enhanced uplink multi-users scheduling for future 802.11ax networks: Wait-to-pick-as-available enhanced. Wireless Communications and Mobile Computing, 16, 3104–3122.

    Article  Google Scholar 

  13. Karaca, M., Bastani, S., Priyanto, B. E., Safavi, M., & Landfeldt. B. (2016). Resource management for OFDMA based next generation 802.11 WLANs. In 2016 9th IFIP wireless and mobile networking conference (WMNC) (pp. 57–64).

  14. Sharon, O., & Alpert, Y. (2017). Scheduling strategies and throughput optimization for the uplink for IEEE 802.11ax and IEEE 802.11ac based networks. Wireless Sensor Network, 9, 03.

    Google Scholar 

  15. Klair, D. K., Chin, K., & Raad, R. (2010). A survey and tutorial of RFID anti-collision protocols. IEEE Communications Surveys Tutorials, 12(3), 400–421.

    Article  Google Scholar 

  16. Shariatmadari, H., Ratasuk, R., Iraji, S., Laya, A., Taleb, T., Jäntti, R., et al. (2015). Machine-type communications: current status and future perspectives toward 5g systems. IEEE Communications Magazine, 53(9), 10–17.

    Article  Google Scholar 

  17. Khorov, E., Lyakhov, A., Krotov, A., & Guschin, A. (2015). A survey on IEEE 802.11 ah: An enabling networking technology for smart cities. Computer Communications, 58, 53–69.

    Article  Google Scholar 

  18. Wang, C., & Lee, C. (2010). A grouping-based dynamic framed slotted aloha anti-collision method with fine groups in RFID systems. In 2010 5th international conference on future information technology (pp. 1–5).

  19. Lee, S. R., & Lee, C. W. (2006). An enhanced dynamic framed slotted aloha anti-collision algorithm. In International conference on emerging directions in embedded & ubiquitous computing.

  20. Wang, H., Xiao, S., Lin, F., Yang, T., & Yang, L. T. (2014). Group improved enhanced dynamic frame slotted aloha anti-collision algorithm. Journal of Supercomputing, 69(3), 1235–1253.

    Article  Google Scholar 

  21. Wei, C., Cheng, R., & Tsao, S. (2013). Performance analysis of group paging for machine-type communications in LTE networks. IEEE Transactions on Vehicular Technology, 62(7), 3371–3382.

    Article  Google Scholar 

  22. Farhadi, G., & Ito, A. (2013). Group-based signaling and access control for cellular machine-to-machine communication. In 2013 IEEE 78th vehicular technology conference (VTC Fall) (pp. 1–6).

  23. Cheng, R., Al-Taee, F. M., Chen, J., & Wei, C. (2015). A dynamic resource allocation scheme for group paging in LTE-advanced networks. IEEE Internet of Things Journal, 2(5), 427–434.

    Article  Google Scholar 

  24. Song, G., & Li, Y. (2005). Cross-layer optimization for OFDM wireless networks-part I: Theoretical framework. IEEE Transactions on Wireless Communications, 4(2), 614–624.

    Article  Google Scholar 

  25. Song, G., & Li, Y. (2005). Cross-layer optimization for OFDM wireless networks-part II: Algorithm development. IEEE Transactions on Wireless Communications, 4(2), 625–634.

    Article  Google Scholar 

  26. Kuo, W., & Liao, W. (2007). Utility-based resource allocation in wireless networks. IEEE Transactions on Wireless Communications, 6(10), 3600–3606.

    Article  Google Scholar 

  27. Kuo, W., & Liao, W. (2008). Utility-based radio resource allocation for QoS traffic in wireless networks. IEEE Transactions on Wireless Communications, 7(7), 2714–2722.

    Article  Google Scholar 

  28. Tan, L., Zhu, Z., Ge, F., & Xiong, N. (2015). Utility maximization resource allocation in wireless networks: Methods and algorithms. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 45(7), 1018–1034.

    Article  Google Scholar 

  29. Bianchi, G. (2000). Performance analysis of the IEEE 802.11 distributed coordination function. IEEE Journal on Selected Areas in Communications, 18(3), 535–547.

    Article  Google Scholar 

  30. Liu, C., Shi, L., & Liu, B. (2007). Utility-based bandwidth allocation for triple-play services. In Fourth European conference on universal multiservice networks (ECUMN’07) (pp. 327–336).

  31. Donthi, S. N., & Mehta, N. B. (2010). Performance analysis of subband-level channel quality indicator feedback scheme of LTE. In 2010 national conference on communications (NCC) (pp. 1–5).

  32. Donthi, S. N., & Mehta, N. B. (2011). Joint performance analysis of channel quality indicator feedback schemes and frequency-domain scheduling for LTE. IEEE Transactions on Vehicular Technology, 60(7), 3096–3109.

    Article  Google Scholar 

  33. De La Fuente, A., Femenias, G., Riera-Palou, F., & Armada, A. G. (2018). Subband CQI feedback-based multicast resource allocation in MIMO-OFDMA networks. IEEE Transactions on Broadcasting, 64(4), 846–864.

    Article  Google Scholar 

  34. Liu, J. et al. (2014). IEEE 802.11ax Channel Model Document. IEEE 802.11ax Task Group.

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundations of CHINA (Grant Nos. 61771390, 61771392, 61871322, 61501373, and 61271279), the National Science and Technology Major Project (Grant No. 2016ZX03001018-004) and the Science and Technology on Avionics Integration Laboratory (Grant Nos. 20185553035 and 201955053002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mao Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, A., Li, B., Yang, M. et al. Utility optimization of grouping-based uplink OFDMA random access for the next generation WLANs. Wireless Netw 27, 809–823 (2021). https://doi.org/10.1007/s11276-020-02489-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-020-02489-8

Keywords

Navigation