Skip to main content
Log in

End-to-end uplink delay jitter in LTE systems

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

For a single LTE interface on a mobile bonding router, we study end-to-end delay jitter seen by a constant bit rate (CBR) traffic under the uplink (synchronous non-adaptive) hybrid-automatic repeat request (HARQ)-controlled transport block (TB)-based scheduling. The qualitative behavior of the delay jitter is studied experimentally and it is observed that the delay jitter is not a function of the aggregate CBR traffic generation rate alone, but depends on the CBR burst sizes (in bytes) and inter-burst generation duration separately. An explanation of this behavior is provided using an analytical model that explicitly accounts for LTE’s HARQ and TB concepts. The qualitative behavior of jitter is then used to design an end-to-end adaptation algorithm to achieve a suitable level of delay jitter. We then experimentally study the impact of system parameters (RSSI, Cell ID, device location, RSRQ, RSRP and, importantly, the average TB size) on the delay jitter performance. Applying a standard machine-learning-type classification approach, we find that the average TB size acts as sufficient statistics for determination of delay jitter. The adaptation algorithm is then modified to achieve a better delay jitter performance under significant changes such as serving cell handover.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Abbreviations

UHD:

Ultra high definition

MBR:

Mobile bonding router

LTE:

Long term evolution

eNB:

Enhanced NodeB

UE:

User equipment

PDCP:

Packet data convergence protocol

RLC:

Radio link control

MAC:

Media access control

SDU:

Service data unit

TB:

Transport block

TBS:

Transport block size

SR:

Scheduling request

RAC:

Random access procedure

BSR:

Buffer status report

PUCCH:

Physical uplink control channel

PRACH:

Physical random access channel

HARQ:

Hybrid automatic repeat request

FDD:

Frequency division duplex

TDD:

Time division duplex

RTT:

Round trip time

CI:

Confidence interval

RTP:

Real-time transport protocol

CBR:

Constant bit rate

PCC:

Performance-oriented congestion control

UDP:

User datagram protocol

TCP:

Transmission control protocol

OSI:

Open systems interconnection

RSRP:

Reference signal received power

RSRQ:

Reference signal received quality

RSSI:

Received signal strength indicator

Cell ID:

Cell identity

BLT:

Bootstrapping lookup table

References

  1. Streamcom. http://www.radiocom.dk/download/ brochurer/streamcom.

  2. Bui, D., Lee, K., Oh, S., Shin, I., Shin, H., Woo, H., & Ban, D. (2013). Greenbag: Energy-efficient bandwidth aggregation for real-time streaming in heterogeneous mobile wireless networks (pp. 57–67).

  3. LTE; Evolved Universal Terrestrial Radio Access (E-UTRA); Packet Data Convergence Protocol (PDCP) specification. 3GPP TS 36.323 version 14.3.0 Release 14.

  4. LTE; Evolved Universal Terrestrial Radio Access (E-UTRA) Radio Link Control (RLC) protocol specification. 3GPP TS 36.322 version 8.8.0 Release 8.

  5. LTE; Evolved Universal Terrestrial Radio Access (E-UTRA) Medium Access Control (MAC) protocol specification. 3GPP TS 36.321 version 12.5.0 Release 12.

  6. LTE; Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Layer Procedures. 3GPP TS 36.213 version 14.2.0 Release 14.

  7. Zaki, Y., Pötsch, T., Chen, J., Subramanian, L., & Görg, C. (2015). Adaptive congestion control for unpredictable cellular networks. Computer Communication Review, 45(5), 509–522.

    Article  Google Scholar 

  8. Abu-Ali, N., Taha, A. E. M., Salah, M., & Hassanein, H. (2014). Uplink scheduling in LTE and LTE-advanced: Tutorial, survey and evaluation framework. IEEE Communications Surveys Tutorials, 16(3), 1239–1265.

    Article  Google Scholar 

  9. Sahu, M., Damle, S., & Kherani, A. A. (2019). Traffic splitting for end-to-end delay jitter control in uplink multi-access systems. In COMSNETS, 11.

  10. Schmidt, P. S., Merz, R., & Feldmann, A. (2012). A first look at multi-access connectivity for mobile networking. In Proceedings of the 2012 ACM workshop on capacity sharing (pp. 9–14). New York, NY: ACM.

  11. TCP extensions for multipath operation with multiple addresses. RFC 6824 (2013).

  12. Singh, V., Ahsan, S., & Ott, J. (2013) MPRTP: Multipath considerations for real-time media. In Multimedia systems conference 2013, MMSys ’13, Oslo, Norway, February 27–March 01, 2013 (pp. 190–201).

  13. Perkins, V., & Singh, C. (2017). Multimedia congestion control: Circuit breakers for unicast RTP sessions.

  14. Greco, C., Cagnazzo, M., & Pesquet, B. (2012). Low-latency video streaming with congestion control in mobile ad-hoc networks. IEEE Transactions on Multimedia, 14, 08.

    Article  Google Scholar 

  15. Carlucci, G., De Cicco, L., Holmer, S., & Mascolo, S. (2016). Analysis and design of the Google congestion control for web real-time communication (WEBRTC) (pp. 1–12).

  16. Cardwell, N., Cheng, Y., Gunn, C. S., Yeganeh, S. H., & Jacobson, V. (2016). BBR: Congestion-based congestion control. ACM Queue, 14(September–October), 20–53.

    Article  Google Scholar 

  17. Ha, S., Rhee, I., & Lisong, X. (2008). Cubic: A new TCP-friendly high-speed TCP variant. Operating Systems Review, 42, 64–74.

    Article  Google Scholar 

  18. Brakmo, L., O’Malley, S., & Peterson, L. (1994). TCP vegas: New techniques for congestion detection and avoidance. In SIGCOMM.

  19. Padhye, J., Firoiu, V., Towsley, D., & Kurose, J. (2000). Modeling TCP reno performance: A simple model and its empirical validation. IEEE/ACM Transactions on Networking, 8(2), 133–145. Networking, IEEE/ACM Transactions on.

    Article  Google Scholar 

  20. Liu, S., Başar, T., & Srikant, R. (2008). TCP-Illinois: A loss- and delay-based congestion control algorithm for high-speed networks. Performance Evaluation, 65, 417–440.

    Article  Google Scholar 

  21. Lu, F., Du, H., Jain, A., Voelker, G. M., Snoeren, A. C., & Terzis, A. (2015). CQIC: Revisiting cross-layer congestion control f or cellular networks. In Proceedings of The 16th international workshop on mobile computing systems and applications (HotMobile) (pp. 45–50).

  22. Winstein, K., Sivaraman, A., & Balakrishnan, H. (2013). Stochastic forecasts achieve high throughput and low delay over cellular networks (pp. 459–472).

  23. Dong, M., Meng, T., Zarchy, D., Arslan, E., Gilad, Y., Godfrey, B., & Schapira, M. (2018). PCC VIVACE: Online-learning congestion control. In NSDI.

  24. Dong, M., Li, Q., Zarchy, D., Godfrey, B., & Schapira, M. (2014). PCC: Re-architecting congestion control for consistent high performance.

  25. Dai, T. , Zhang, X., Zhang, Y., & Guo, Z. (2019). Statistical learning based congestion control for real-time video communication.

  26. Zhang, F. P., Yang, O. W. W., & Cheng, B. K.-M. (2001). Performance evaluation of jitter management algorithms. In Canadian conference on electrical and computer engineering 2001 conference proceedings (Cat. No.01TH8555) (Vol. 2, pp. 1011–1016).

  27. Le, H. T., Nguyen, H. N., Pham Ngoc, N., Pham, A. T., & Thang, T. C. (2015). A novel adaptation method for http streaming of VBR videos over mobile networks. Mobile Information Systems, 2016, 2920850.

    Google Scholar 

  28. Majed, N., Ragot, S., Lagrange, X., & Blanc, A. (2017). Delay and quality metrics in voice over LTE (volte) networks: An end-terminal perspective (pp. 643–648).

  29. Quan Leng, Y.-H., Wei, S. H., Mok, A., Zhang, W., & Tomizuka, M. (2015). Improving control performance by minimizing jitter in RT-WiFi networks. In Proceedings—Real-Time Systems Symposium (pp. 63–73).

  30. Hammad, K., Moubayed, A., Shami, A., & Primak, S. (2016). Analytical approximation of packet delay jitter in simple queues. IEEE Wireless Communications Letters, 5, 1–1.

    Article  Google Scholar 

  31. Brun, O., Bockstal, C., & Garcia, J.-M. (2006). Analytic approximation of the jitter incurred by CBR traffics in IP networks. Telecommunication Systems, 33, 23–45.

    Article  Google Scholar 

  32. Verma, D., Zhang, H., & Ferrari, D. (2001). Delay jitter control for real-time communication in a packet switching network.

  33. Holma, H., & Toskala, A. (2011). LTE for UMTS evolution to LTE-advanced. London: Wiley.

    Book  Google Scholar 

  34. Damle, S., Sahu, M., & Kherani, A. A. (2019). An uplink multi-access system for high definition video transmission. In COMSNETS (pp. 532–534).

  35. Subramanian, R., Sandrasegaran, K., & Kong, X. (2016). Benchmarking of real-time LTE network in dynamic environment. In Communications (APCC), 22nd Asia-Pacific conference (pp. 20–25).

  36. LTE; Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Layer; Measurements. 3GPP TS 36.214 version 10.1.0 Release 10.

  37. Mitchell, T. M. (1997). Machine learning. New York: McGraw-Hill.

    MATH  Google Scholar 

  38. Hssina, B., Merbouha, A., Ezzikouri, H., & Erritali, M. (2014). A comparative study of decision tree id3 and c4.5. International Journal of Advanced Computer Science and Applications (IJACSA), 4(2), 13–19.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Megha Sahu.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahu, M., Damle, S. & Kherani, A.A. End-to-end uplink delay jitter in LTE systems. Wireless Netw 27, 1783–1800 (2021). https://doi.org/10.1007/s11276-020-02517-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-020-02517-7

Keywords

Navigation