Skip to main content
Log in

A cooperative protocol for pervasive underwater acoustic networks

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

The novel Underwater Wireless Sensor Network (UWSN) can contribute to monitor and explore aquatic environments. But, communicating in these environments is still hard and has many challenges. For example, optical and electromagnetic waves deteriorate from high-attenuation. Moreover, acoustic communication has a large packet error rate and low throughput. A large number of solutions to improve aquatic communication refers to routing protocols, medium access control protocols, and designing acoustic modems. Cooperative communication explores the broadcast nature of wireless transmission and enhances its performance. However, cooperative communication has not been fully explored in UWSNs. In this work, we present COPPER, a Cooperative Protocol for Pervasive Underwater Acoustic Networks. COPPER considers LLC and MAC sub-layers and operates synchronously or asynchronously over Time Division Multiple Access using a selective repeat ARQ scheme. COPPER exploits the broadcast nature of wireless communication and, sensor nodes that are idle can operate as a relay, enhancing communication by space diversity. Simulation results show that COPPER improves network performance. For example, the network goodput improves by 17% and the packet error rate decreases by 65%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

References

  1. Acar, G., & Adams, A. (2006). Acmenet: An underwater acoustic sensor network protocol for real-time environmental monitoring in coastal areas. IEE Proceedings-Radar, Sonar and Navigation, 153(4), 365–380.

    Google Scholar 

  2. Ahmad, A., Ahmed, S., Imran, M., Alam, M., Niaz, I. A., & Javaid, N. (2017). On energy efficiency in underwater wireless sensor networks with cooperative routing. Annals of Telecommunications, 72(3–4), 173–188.

    Google Scholar 

  3. Akyildiz, I. F., Pompili, D., & Melodia, T. (2004). Challenges for efficient communication in underwater acoustic sensor networks. ACM Sigbed Review, 1(2), 3–8.

    Google Scholar 

  4. Akyildiz, I. F., Pompili, D., & Melodia, T. (2005). Underwater acoustic sensor networks: Research challenges. Ad hoc Networks, 3(3), 257–279.

    Google Scholar 

  5. Anjangi, P., & Chitre, M. (2015). Design and implementation of super-tdma: A mac protocol exploiting large propagation delays for underwater acoustic networks. In ACM WUWNet. ACM.

  6. Azad, S., Casari, P., Guerra, F., & Zorzi, M. (2011). On arq strategies over random access protocols in underwater acoustic networks. In Proceedings of IEEE OCEANS.

  7. Azad, S., Casari, P., & Zorzi, M. (2013). The underwater selective repeat error control protocol for multiuser acoustic networks: Design and parameter optimization. IEEE Transactions on Wireless Communications, 12(10), 4866–4877.

    Google Scholar 

  8. Badia, L., Mastrogiovanni, M., Petrioli, C., Stefanakos, S., & Zorzi, M. (2007). An optimization framework for joint sensor deployment, link scheduling and routing in underwater sensor networks. ACM SIGMOBILE Mobile Computing and Communications Review, 11(4), 44–56.

    Google Scholar 

  9. Bainbridge, S., Eggeling, D., & Page, G. (2011). Lessons from the field-two years of deploying operational wireless sensor networks on the great barrier reef. Sensors, 11(7), 6842–6855.

    Google Scholar 

  10. Basagni, S., Petrioli, C., Petroccia, R., & Spaccini, D. (2015). Carp: A channel-aware routing protocol for underwater acoustic wireless networks. Ad Hoc Networks, 34, 92–104.

    Google Scholar 

  11. Brekhovskikh, L. M., Lysanov, Y. P., & Beyer, R. T. (1991). Fundamentals of ocean acoustics. The Journal of the Acoustical Society of America, 90(6), 3382–3383.

    MATH  Google Scholar 

  12. Burrowes, G., & Khan, J. Y. (2011). Short-range underwater acoustic communication networks. In Autonomous underwater vehicles. InTech.

  13. Carbonelli, C., Chen, S.-H., & Mitra, U. (2009). Error propagation analysis for underwater cooperative multi-hop communications. Ad Hoc Networks, 7(4), 759–769.

    Google Scholar 

  14. Carbonelli, C., & Mitra, U. (2006). Cooperative multihop communication for underwater acoustic networks. In ACM WUWNet.

  15. Cario, G., Casavola, A., Gjanci, P., Lupia, M., Petrioli, C., & Spaccini, D. (2017). Long lasting underwater wireless sensors network for water quality monitoring in fish farms. In OCEANS 2017-Aberdeen (pp. 1–6). IEEE.

  16. Casavola, A. (2019). Nemo - the environmental monitoring and the automation of underwater fish farms. http://projects.dimes.unical.it/nemo/, 2017. Accessed: October.

  17. Cerqueira, L. S., Vieira, A. B., Vieira, L. F., Vieira, M. A., & Nacif, J. A. (2018). Copper: Increasing underwater sensor network performance through nodes cooperation. In 2018 IEEE symposium on computers and communications (ISCC) (pp. 00322–00327). IEEE.

  18. Cerqueira, L. S., Vieira, A. B., Vieira, L. F., Vieira, M. A., & Nacif, J. A. M. (2017). Cooperative protocol for medium access control in underwater acoustic sensor networks. In Magnetic communications: From theory to practice (pp. 151–168). CRC Press.

  19. Chitre, M., Motani, M., & Shahabudeen, S. (2012). Throughput of networks with large propagation delays. IEEE Journal of Oceanic Engineering, 37(4), 645–658.

    Google Scholar 

  20. Chitre, M., Shahabudeen, S., & Stojanovic, M. (2008). Underwater acoustic communications and networking: Recent advances and future challenges. Marine Technology Society Journal, 42(1), 103–116.

    Google Scholar 

  21. Chitre, M., Topor, I., & Koay, T.-B. (2012). The unet-2 modem–an extensible tool for underwater networking research. In IEEE OCEANS.

  22. Coutinho, R. W., Boukerche, A., Vieira, L. F., & Loureiro, A. A. (2015). Modeling and analysis of opportunistic routing in low duty-cycle underwater sensor networks. In ACM MSWiM.

  23. Coutinho, R. W., Boukerche, A., Vieira, L. F., & Loureiro, A. A. (2016). Geographic and opportunistic routing for underwater sensor networks. IEEE Transactions on Computers, 65(2), 548–561.

    MathSciNet  MATH  Google Scholar 

  24. Coutinho, R. W., Vieira, L. F. M., & Loureiro, A. A. F. (2013). DCR: Depth-controlled routing protocol for underwater sensor networks. In 2013 IEEE symposium on computers and communications (ISCC).

  25. Coutinho, R. W.L ., Boukerche, A., Vieira, L. F. M., & Loureiro, A. A. F. (2014). GEDAR: Geographic and opportunistic routing protocol with depth adjustment for mobile underwater sensor networks. In ICC.

  26. Coutinho, R. W. L., Boukerche, A., Vieira, L. F. M., & Loureiro, A. A. F. (2016). Design guidelines for opportunistic routing in underwater networks. IEEE Communications Magazine, 54(2), 40–48.

    MATH  Google Scholar 

  27. Cui, J.-H., Kong, J., Gerla, M., & Zhou, S. (2006). The challenges of building mobile underwater wireless networks for aquatic applications. IEEE Network, 20(3), 12–18.

    Google Scholar 

  28. Demirors, E., Sklivanitis, G., Santagati, G. E., Melodia, T., & Batalama, S. N. (2014). Design of a software-defined underwater acoustic modem with real-time physical layer adaptation capabilities. In Proceedings of the ACM international conference on underwater networks & systems.

  29. Diamant, R., Casari, P., & Zorzi, M. (2016). A TDMA-based mac protocol exploiting the near-far effect in underwater acoustic networks. In OCEANS 2016-Shanghai (pp. 1–5). IEEE.

  30. Domingo, M. C. (2011). A distributed energy-aware routing protocol for underwater wireless sensor networks. Wireless Personal Communications, 57(4), 607–627.

    Google Scholar 

  31. Doosti-Aref, A., & Ebrahimzadeh, A. (2018). Adaptive relay selection and power allocation for OFDM cooperative underwater acoustic systems. IEEE Transactions on Mobile Computing, 17(1), 1–15.

    Google Scholar 

  32. Faustine, A., Mvuma, A. N., Mongi, H. J., Gabriel, M. C., Tenge, A. J., & Kucel, S. B. (2014). Wireless sensor networks for water quality monitoring and control within lake victoria basin: Prototype development. Wireless Sensor Network, 6(12), 281.

    Google Scholar 

  33. Felemban, E., Shaikh, F. K., Qureshi, U. M., Sheikh, A. A., & Qaisar, S. B. (2015). Underwater sensor network applications: A comprehensive survey. International Journal of Distributed Sensor Networks, 11(11), 896832.

    Google Scholar 

  34. Ghosh, A., Lee, J.-W., & Cho, H.-S. (2013). Throughput and energy efficiency of a cooperative hybrid arq protocol for underwater acoustic sensor networks. Sensors, 13(11), 15385–15408.

    Google Scholar 

  35. Gibson, J., Larraza, A., Rice, J., Smith, K., & Xie, G. (2002). On the impacts and benefits of implementing full-duplex communications links in an underwater acoustic network. Technical report, NAVAL POSTGRADUATE SCHOOL MONTEREY CA.

  36. Han, J.-W., Ju, H.-J., Kim, K.-M., Chun, S.-Y., & Dho, K.-C. (2008). A study on the cooperative diversity technique with amplify and forward for underwater wireless communication. In Proceedins of IEEE OCEANS.

  37. Han, Z., Sun, Y. L., & Shi, H. (2008). Cooperative transmission for underwater acoustic communications. In IEEE ICC.

  38. Heidemann, J., Stojanovic, M., & Zorzi, M. (2012). Underwater sensor networks: Applications, advances and challenges. Philosophical Transactions of the Royal Society A, 370(1958), 158–175.

    Google Scholar 

  39. Henry, N. F., & Henry, O. N. (2015). Wireless sensor networks based pipeline vandalisation and oil spillage monitoring and detection: Main benefits for nigeria oil and gas sectors. The SIJ Transactions on Computer Science Engineering & its Applications (CSEA), 3(1), 1–6.

    Google Scholar 

  40. Hong, L., Hong, F., Guo, Z.-W., & Yang, X. (2008). A TDMA-based mac protocol in underwater sensor networks. In 4th international conference on wireless communications, networking and mobile computing, 2008. WiCOM’08 (pp. 1–4). IEEE.

  41. Jadhav, P., & Satao, R. (2016). A survey on opportunistic routing protocols for wireless sensor networks. Procedia Computer Science, 79, 603–609.

    Google Scholar 

  42. Jang, J., & Adib, F. (2019). Underwater backscatter networking. In Proceedings of the ACM special interest group on data communication, SIGCOMM ’19, New York, NY, USA. ACM (pp. 187–199).

  43. Javaid, N., Hussain, S., Ahmad, A., Imran, M., Khan, A., & Guizani, M. (2017). Region based cooperative routing in underwater wireless sensor networks. Journal of Network and Computer Applications, 92, 31–41.

    Google Scholar 

  44. Jiang, S. (2018). On reliable data transfer in underwater acoustic networks: A survey from networking perspective. IEEE Communications Surveys & Tutorials, 20(2), 1036–1055.

    Google Scholar 

  45. Khan, R. A. M., & Karl, H. (2014). Mac protocols for cooperative diversity in wireless lans and wireless sensor networks. IEEE Communications Surveys & Tutorials, 16(1), 46–63.

    Google Scholar 

  46. Kim, H.-w., & Cho, H.-S. (2016). A cooperative arq-based mac protocol for underwater wireless sensor networks. In Proceedings of the 11th ACM international conference on underwater networks & systems.

  47. Koulakezian, A., Ohannessian, R., Denkilkian, H., Chalfoun, M., Joujou, M. K., Chehab, A., & Elhajj, I. H. (2008). Wireless sensor node for real-time thickness measurement and localization of oil spills. In 2008 IEEE/ASME international conference on advanced intelligent mechatronics (pp. 631–636). IEEE.

  48. Kredo, K., II., Djukic, P., & Mohapatra, P. (2009). Stump: Exploiting position diversity in the staggered TDMA underwater mac protocol. In INFOCOM 2009, IEEE (pp. 2961–2965). IEEE.

  49. Kredo II, K., & Mohapatra, P. (2010). Distributed scheduling and routing in underwater wireless networks. In Global telecommunications conference (GLOBECOM 2010), 2010 IEEE (pp. 1–6). IEEE.

  50. Lanbo, L., Shengli, Z., & Jun-Hong, C. (2008). Prospects and problems of wireless communication for underwater sensor networks. Wireless Communications and Mobile Computing, 8(8), 977–994.

    Google Scholar 

  51. Laneman, J. N., Tse, D. N., & Wornell, G. W. (2004). Cooperative diversity in wireless networks: Efficient protocols and outage behavior. IEEE Transaction on Information theory, 50(12), 3062–3080.

    MathSciNet  MATH  Google Scholar 

  52. Lee, J. W., Cheon, J. Y., & Cho, H.-S. (2010). A cooperative arq scheme in underwater acoustic sensor networks. In Proceedings of IEEE OCEANS.

  53. Lee, J. W., & Cho, H.-S. (2011). A cooperative arq scheme for multi-hop underwater acoustic sensor networks. In Underwater technology (UT), 2011 IEEE symposium on and 2011 workshop on scientific use of submarine cables and related technologies (SSC).

  54. Lee, U., Wang, P., Noh, Y., Vieira, L. F. M., Gerla, M., & Cui, J.-H. (2010). Pressure routing for underwater sensor networks. In Proceedings of the IEEE conference on computer communications (INFOCOM).

  55. Li, X., Liu, J., Yan, L., Han, S., & Guan, X. (2017). Relay selection in underwater acoustic cooperative networks: A contextual bandit approach. IEEE Communications Letters, 21(2), 382–385.

    Google Scholar 

  56. Lurton, X. (2002). An introduction to underwater acoustics: Principles and applications. Berlin: Springer Science & Business Media.

    Google Scholar 

  57. Menon, K. U., Divya, P., & Ramesh, M. V. (2012). Wireless sensor network for river water quality monitoring in india. In 2012 third international conference on computing, communication and networking technologies (ICCCNT’12) (pp. 1–7). IEEE.

  58. Mustafa, S., Khan, M. A., Malik, S. A., et al. (2012). Design of underwater sensor networks for water quality monitoring. World Applied Sciences Journal, 17(11), 1441–1444.

    Google Scholar 

  59. NS3. ns-3. https://www.nsnam.org/, 2018. Accessed: March, 2018.

  60. Parrish, N., Tracy, L., Roy, S., Arabshahi, P., & Fox, W. L. (2008). System design considerations for undersea networks: Link and multiple access protocols. IEEE Journal on Selected Areas in Communications, 26(9), 1720–1730.

    Google Scholar 

  61. Pasi, A. A., & Bhave, U. (2015). Flood detection system using wireless sensor network. International Journal of Advanced Research in Computer Science and Software Engineering, 5(2), 386–389.

    Google Scholar 

  62. Pinto, D., Viana, S. S., Nacif, J. A. M., Vieira, L. F., Vieira, M. A., Vieira, A. B., & Fernandes, A. O. (2012). Hydronode: a low cost, energy efficient, multi purpose node for underwater sensor networks. In Proceedings of the IEEE conference on local computer networks (LCN).

  63. Rahmati, M., & Duman, T. M. (2014). Achieving delay diversity in asynchronous underwater acoustic (UWA) cooperative communication systems. IEEE Transactions on Wireless Communications, 13(3), 1367–1379.

    Google Scholar 

  64. Rappaport, T. S., et al. (1996). Wireless communications: Principles and practice (Vol. 2). New Jersey: Prentice hall PTR.

    MATH  Google Scholar 

  65. Renner, C., & Golkowski, A. J. (2016). Acoustic modem for micro AUVs: Design and practical evaluation. In ACM WUWNet.

  66. Shahabudeen, S., Chitre, M., & Motani, M. (2011). Mac protocols that exploit propagation delay in underwater networks. In Proceedins of IEEE OCEANS (pp. 1–6). IEEE.

  67. Sozer, E. M., Stojanovic, M., & Proakis, J. G. (2000). Underwater acoustic networks. IEEE Journal of Oceanic Engineering, 25(1), 72–83.

    Google Scholar 

  68. Stojanovic, M. (2008). Underwater acoustic communications: Design considerations on the physical layer. In Proceedings of the fifth annual conference on wireless on demand network systems and services WONS (pp. 1–10). IEEE.

  69. Stojanovic, M., & Preisig, J. (2009). Underwater acoustic communication channels: Propagation models and statistical characterization. IEEE Communications Magazine, 47(1), 84–89.

    Google Scholar 

  70. Tu, K., Duman, T.M., Proakis, J.G., & Stojanovic, M. (2010). Cooperative mimo-ofdm communications: Receiver design for doppler-distorted underwater acoustic channels. In IEEE ASILOMAR.

  71. Tuna, G., Arkoc, O., & Gulez, K. (2013). Continuous monitoring of water quality using portable and low-cost approaches. International Journal of Distributed Sensor Networks, 9(6), 249598.

    Google Scholar 

  72. Tyan, S., Oh, S.-H., Domingo, M., & Caiti, A. (2013). Auv-rm: underwater sensor network scheme for auv based river monitoring. Research Trend in Computer and Applications, SERCE, 24, 53–55.

    Google Scholar 

  73. Urick, R. J. (1975). Principles of underwater sound-2. New York, NY (USA): McGraw-Hill Book.

    Google Scholar 

  74. Vajapeyam, M., Vedantam, S., Mitra, U., Preisig, J. C., & Stojanovic, M. (2008). Distributed space-time cooperative schemes for underwater acoustic communications. IEEE Journal of Oceanic Engineering, 33(4), 489–501.

    Google Scholar 

  75. Vieira, L., Loureiro, A., Fernandes, A., & Campos, M. (2010). Redes de sensores aquáticas. XXVIII Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos, Gramado, RS, Brasil, 1, 199–240.

    Google Scholar 

  76. Vieira, L. F. M. (2012). Performance and trade-offs of opportunistic routing in underwater networks. In IEEE WCNC.

  77. Vieira, L. F. M., Vieira, M. A. M., Pinto, D., Nacif, J. A. M., Viana, S. S., & Vieira, A. B. (2012). HydroNode: An underwater sensor node prototype for monitoring hydroelectric reservoirs. New York: Association for Computing Machinery. https://doi.org/10.1145/2398936.2398988.

    Book  Google Scholar 

  78. Vieira, L. F. M., Vieira, M. A. M., Nacif, J. A. M., & Borges Vieira, A. (2018). Autonomous wireless lake monitoring. Computing in Science Engineering, 20(1), 66–75. https://doi.org/10.1109/MCSE.2017.2581140.

    Article  Google Scholar 

  79. Wang, P., Feng, W., Zhang, L., & Li, V. O. (2011). Asynchronous cooperative transmission in underwater acoustic networks. In IEEE symposium on underwater technology.

  80. Wenz, G. M. (1962). Acoustic ambient noise in the ocean: Spectra and sources. The Journal of the Acoustical Society of America, 34(12), 1936–1956.

    Google Scholar 

  81. Wills, J., Ye, W., & Heidemann, J. (2006). Low-power acoustic modem for dense underwater sensor networks. In Proceedings the 1st ACM international workshop on Underwater networks (pp. 79–85). ACM.

  82. Yalcuk, A., & Postalcioglu, S. (2015). Evaluation of pool water quality of trout farms by fuzzy logic: Monitoring of pool water quality for trout farms. International Journal of Environmental Science and Technology, 12(5), 1503–1514.

    Google Scholar 

  83. Yu, W., Chen, Y., Tang, Y., & Xu, X. (2018). Power allocation for underwater source nodes in uwa cooperative networks. In 2018 IEEE international conference on signal processing, communications and computing (ICSPCC) (pp. 1–6). IEEE.

  84. Zhou, Z., Yao, B., Xing, R., Shu, L., & Bu, S. (2015). E-carp: An energy efficient routing protocol for uwsns in the internet of underwater things. IEEE Sensors Journal, PP(99), 1.

Download references

Acknowledgements

The authors would like to thank the research agencies CAPES, CNPq, FAPESP, and FAPEMIG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex B. Vieira.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cerqueira, L.S., Vieira, A.B., Vieira, L.F.M. et al. A cooperative protocol for pervasive underwater acoustic networks. Wireless Netw 27, 1941–1963 (2021). https://doi.org/10.1007/s11276-021-02550-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-021-02550-0

Keywords

Navigation