Skip to main content
Log in

Power allocation for D2D aided cooperative NOMA system with imperfect CSI

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Non-orthogonal multiple access (NOMA) has become one of the promising technologies for 5G, which can improve the spectrum resource utilization and system throughput along with the support of effective resource allocation algorithms. Most previous works on NOMA-enhanced cooperative relay systems assume perfect channel state information (CSI), which degrades the performance of their schemes severely when used in imperfect CSI environment. In this article, a power allocation algorithm in D2D aided cooperative NOMA communications with imperfect CSI is proposed. In the proposed algorithm, the probabilistic non-convex optimization problem is transformed into a non-probabilistic convex optimization problem by evaluating the channel gains and using the successive convex programming (SCP) which approximately gives the lower bound of the maximum transmission rate. In the SCP enhanced power allocation algorithm (SCPPAA), we iteratively obtain the sub-optimal power allocation coefficients for the optimization problem by Lagrangian dual multiplier method and Karush–Kuhn–Tucker conditions. This program is divided into two layers for updating the power allocation coefficients and the multipliers respectively. Numerical results demonstrate that our algorithm has a fast convergence performance and the algorithm in D2D-based cooperative NOMA scheme has significant sum-data-rate advantages compared with it in traditional ways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Haci, H., Zhu, H., & Wang, J. (2017). Performance of non-orthogonal multiple access with a novel asynchronous interference cancellation technique. IEEE Transactions on Communications, 65(3), 1319–1335.

    Article  Google Scholar 

  2. Dai, Y., Sheng, M., Zhao, K., Liu, L., Liu, J., & Li, J. (2016). Interference-aware resource allocation for D2D underlaid cellular network using SCMA: A hypergraph approach. IEEE Wireless Communications and Networking Conference, Doha, 2016, 1–6.

    Google Scholar 

  3. Elshaer, H., Vlachos, C., Friderikos, V., & Dohler, M. (2016). Interference-aware decoupled cell association in device-to-device based 5G networks. IEEE 83rd Vehicular Technology Conference (VTC Spring), Nanjing, 2016, 1–5.

    Google Scholar 

  4. Tan, Y., Zhou, J., & Qin, J. (2016). Novel channel estimation for non-orthogonal multiple access systems. IEEE Signal Processing Letters, 23(12), 1781–1785.

    Article  Google Scholar 

  5. Wang, Y., Wu, Y., Zhou, F., Chu, Z., Wu, Y., & Yuan, F. (2018). Multi-objective resource allocation in a NOMA cognitive radio network with a practical non-linear energy harvesting model. IEEE Access, 6, 12973–12982.

    Article  Google Scholar 

  6. Moltafet, M., Azmi, P., Mokari, N., Javan, M. R., & Mokdad, A. (2018). Optimal and fair energy efficient resource allocation for energy harvesting-enabled-PD-NOMA-based HetNets. IEEE Transactions on Wireless Communications, 17(3), 2054–2067.

    Article  Google Scholar 

  7. Zeng, M., Yadav, A., Dobre, O. A., & Poor, H. V. (2018). Energy-efficient power allocation for MIMO-NOMA with multiple users in a cluster. IEEE Access, 6, 5170–5181.

    Article  Google Scholar 

  8. Jiang, K., Jing, T., Huo, Y., Zhang, F., & Li, Z. (2018). SIC-based secrecy performance in uplink NOMA multi-eavesdropper wiretap channels. IEEE Access, 6, 19664–19680.

    Article  Google Scholar 

  9. Islam, S. M. R., Zeng, M., Dobre, O. A., & Kwak, K. S. (2018). Resource allocation for downlink noma systems: Key techniques and open issues. IEEE Wireless Communications, 25(2), 40–47.

    Article  Google Scholar 

  10. Zhou, F., Wu, Y., Hu, R. Q., Wang, Y., & Wong, K. K. (2018). Energy-efficient NOMA enabled heterogeneous cloud radio access networks. IEEE Network, 32(2), 152–160.

    Article  Google Scholar 

  11. Ding, Z., Peng, M., & Poor, H. V. (2015). Cooperative non-orthogonal multiple access in 5G systems. IEEE Communications Letters, 19(8), 1462–1465.

    Article  Google Scholar 

  12. Fodor, G., et al. (2012). Design aspects of network assisted device-to-device communications. IEEE Communications Magazine, 50(3), 170–177.

    Article  Google Scholar 

  13. Zeng, S., Wang, C., Qin, C., & Wang, W. (2018). Interference alignment assisted by D2D communication for the downlink of MIMO heterogeneous networks. IEEE Access, 6, 24757. https://doi.org/10.1109/ACCESS.2018.2831907.

    Article  Google Scholar 

  14. Kim, J. B., Lee, I. H., & Lee, J. (2018). Capacity scaling for D2D aided cooperative relaying systems using NOMA. IEEE Wireless Communications Letters, 7(1), 42–45.

    Article  Google Scholar 

  15. Zhang, Z., Ma, Z., Xiao, M., Ding, Z., & Fan, P. (2017). Full-duplex device-to-device-aided cooperative nonorthogonal multiple access. IEEE Transactions on Vehicular Technology, 66(5), 4467–4471.

    Google Scholar 

  16. Pei, L., et al. (2018). Energy-efficient D2D communications underlaying noma-based networks with energy harvesting. IEEE Communications Letters, 22(5), 914–917.

    Article  Google Scholar 

  17. Ahmad, A., Rehmani, M. H., Tembine, H., Mohammed, O. A., & Jamalipour, A. (2017). IEEE access special section editorial: Optimization for emerging wireless networks: IoT, 5G, and smart grid communication networks. IEEE Access, 5, 2096–2100.

    Article  Google Scholar 

  18. Zhao, J., Liu, Y., Chai, K. K., Chen, Y., & Elkashlan, M. (2017). Joint subchannel and power allocation for NOMA enhanced D2D communications. IEEE Transactions on Communications, 65(11), 5081–5094.

    Article  Google Scholar 

  19. Pan, Y., Pan, C., Yang, Z., & Chen, M. (2018). Resource allocation for D2D communications underlaying a NOMA-based cellular network. IEEE Wireless Communications Letters, 7(1), 130–133.

    Article  Google Scholar 

  20. Bertsekas, D. P. (1999). Nonlinear programming. Massachusets: Athena scientific Belmont.

    Google Scholar 

  21. Chu, P., Wang, X., Wang, D., & Yu, L. (2017). A D2D mode selection scheme with energy consumption minimization underlaying two-tier heterogeneous cellular networks. IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC). https://doi.org/10.1109/PIMRC.2017.8292530.

    Article  Google Scholar 

  22. Yin, R., Yu, G., Zhang, H., Zhang, Z., & Li, G. Y. (2015). Pricing-based interference coordination for D2D communications in cellular networks. IEEE Transactions on Wireless Communications, 14(3), 1519–1532.

    Article  Google Scholar 

  23. Feng, D., et al. (2015). Mode switching for energy-efficient device-to-device communications in cellular networks. IEEE Transactions on Wireless Communications, 14(12), 6993–7003.

    Article  Google Scholar 

  24. Ma, C., et al. (2016). Cooperative spectrum sharing in D2D-enabled cellular networks. IEEE Transactions on Communications, 64(10), 4394–4408.

    Google Scholar 

  25. Tang, A., Wang, X., & Zhang, C. (2017). Cooperative full duplex device to device communication underlaying cellular networks. IEEE Transactions on Wireless Communications, 16(12), 7800–7815.

    Article  Google Scholar 

  26. Cheng, S., Huang, C. M., & Cheng, G. S. (2015). A D2D cooperative relay scheme for machine-to-machine communication in the LTE-A cellular network. International Conference on Information Networking (ICOIN). https://doi.org/10.1109/ICOIN.2015.7057874.

    Article  Google Scholar 

  27. Liu, Q., Lv, T., & Lin, Z. (2018). Energy-efficient transmission design in cooperative relaying systems using NOMA. IEEE Communications Letters, 22(3), 594–597.

    Article  Google Scholar 

  28. Xiao, H., Hu, Y., Yan, K., & Ouyang, S. (2016). Power allocation and relay selection for multisource multirelay cooperative vehicular networks. IEEE Transactions on Intelligent Transportation Systems, 17(11), 3297–3305.

    Article  Google Scholar 

  29. Punchihewa, A., Bhargava, V. K., & Despins, C. (2011). Capacity and Power Allocation for Cognitive MAC with Imperfect Channel Estimation. IEEE Transactions on Wireless Communications, 10(12), 4001–4007.

    Article  Google Scholar 

  30. Fang, F., Zhang, H., Cheng, J., Roy, S., & Leung, V. C. M. (2017). Joint user scheduling and power allocation optimization for energy-efficient NOMA systems with imperfect CSI. IEEE Journal on Selected Areas in Communications, 35(12), 2874–2885.

    Article  Google Scholar 

  31. Ho-Van, K. (2014). Cognitive relay networks with underlay spectrum sharing and channel estimation error: Interference probability and BER analysis. Journal of Communications and Networks, 16(3), 301–304.

    Article  Google Scholar 

  32. Ng, D. W. K., Lo, E. S., & Schober, R. (2012). Energy-efficient resource allocation in OFDMA systems with large numbers of base station antennas. IEEE Transactions on Wireless Communications, 11(9), 3292–3304.

    Article  Google Scholar 

  33. Wang, X., Zheng, F., Zhu, P., & You, X. (2016). Energy-efficient resource allocation in coordinated downlink multicell OFDMA systems. IEEE Transactions on Vehicular Technology, 65(3), 1395–1408.

    Article  Google Scholar 

  34. Papandriopoulos, J., & Evans, J. S. (2009). SCALE: A low-complexity distributed protocol for spectrum balancing in multiuser DSL networks. IEEE Transactions on Information Theory, 55(8), 3711–3724.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 61601109); the Fundamental Research Funds for the Central Universities (Grant No. N152305001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingpu Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Song, X., Dong, L. et al. Power allocation for D2D aided cooperative NOMA system with imperfect CSI. Wireless Netw 30, 3669–3682 (2024). https://doi.org/10.1007/s11276-021-02561-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-021-02561-x

Keywords