Skip to main content

Advertisement

Log in

Throughput maximization for UAV-assisted wireless powered D2D communication networks with a hybrid time division duplex/frequency division duplex scheme

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

In this paper, we investigate a low-altitude unmanned aerial vehicle (UAV)-assisted wireless power- ed device-to-device (D2D) network with the “harvest-transmit-store” model, where a UAV broadcasts energy to all D2D transmitters and the transmitters then store or use the energy for transmission information. In the proposed model, the UAV does not transmit energy in the transmission information time, resulting in a limited charging time. In addition, the interference may be caused by communicating information of an arbitrary number of D2D pairs simultaneously. In this paper, we propose a hybrid time division duplex/frequency division duplex communication scheme, which performs the power transfer and information transmission simultaneously in the transmission information time. The scheme cancels the cochannel interference by using the time division duplex scheme and guarantees the charging time by using the frequency division duplex. We consider optimizing the throughput based on the scheme via joint power control, spectrum allocation, and scheduling time. We propose a two-step algorithm to solve the formulated nonconvex problem. The simulation results show that the proposed algorithm improves the average throughput compared to the other schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hossain, E., & Hasan, M. (2015). 5G cellular: Key enabling technologies and research challenges. IEEE Instrumentation and Measurement Magazine, 18(3), 11–21.

    Article  Google Scholar 

  2. Zhang, L., Cao, B., Li, Y., Peng, M., & Feng, G. (2020). A multi-Stage stochastic programming based offloading policy for fog enabled IoT-eHealth. IEEE Journal on Selected Areas in Communication. https://doi.org/10.1109/JSAC.2020.3020659.

    Article  Google Scholar 

  3. Pratas N. K., Popovski, P. (2014). Underlay of low-rate machine-type D2D links on downlink cellular links, in Proc. IEEE International Conference on Communications (ICC), pp. 423–428.

  4. Lei, M., Zhang, X., Yu, B., et al. (2018). Power and discrete rate adaptation in BER constrained wireless powered communication networks. IET Communications, 12(18), 2213–2221.

    Article  Google Scholar 

  5. Cao, B., Xia, S., Han, J., & Li, Y. (2020). A distributed game methodology for crowd-sensing in uncertain wireless scenario. IEEE Transactions on Mobile Computing, 19(1), 15–28.

    Article  Google Scholar 

  6. Chai, Z., Zhang, N., Sun, P., et al. (2016). Tailorable and wearable textile devices for solar energy harvesting and simultaneous storage. ACS Nano, 10(10), 9201–9207.

    Article  Google Scholar 

  7. Yang, S., & Mccann, J. A. (2014). Distributed optimal lexicographic max-min rate allocation in solar-powered wireless sensor networks. ACM Transactions on Sensor Networks, 11, 1–35.

    Article  Google Scholar 

  8. Yang, Y., Zhu, G., Zhang, H., et al. (2013). Triboelectric nanogenerator for harvesting wind energy and as self-powered wind vector sensor system. ACS Nano, 7(10), 9461–9468.

    Article  Google Scholar 

  9. Zhong, C., Suraweera, H., Zheng, G., et al. (2014). Wireless information and power transfer with full duplex relaying. IEEE Transactions on Communications, 62(10), 3447–3461.

    Article  Google Scholar 

  10. Hadzi-Velkov, Z., Nikoloska, I., Karagiannidis, G., & Duong, T. (2016). Wireless networks with energy harvesting and power transfer: Joint power and time allocation. IEEE Signal Processing Letters, 23(1), 50–54.

    Article  Google Scholar 

  11. Kuang, Z., Liu, G., Li, G., et al. (2018). Energy efficient resource allocation algorithm in energy harvesting-based D2D heterogeneous networks. IEEE Internet Things, 6(1), 557–567.

    Article  Google Scholar 

  12. Wang, H., Wang, J., Ding, G., et al. (2018). D2D communications underlaying wireless powered communication networks. IEEE Transactions on Vehicular Technology, 67(8), 7872–7876.

    Article  Google Scholar 

  13. Pei, L., Yang, Z., Pan, C., et al. (2018). Energy-efficient D2D communications underlaying NOMA-based networks with energy harvesting. IEEE Communications Letters, 22(5), 914–917.

    Article  Google Scholar 

  14. Gupta, S., Zhang, R., & Hanzo, L. (2018). Energy harvesting aided device-to-device communication in the over-sailing heterogeneous two-tier downlink. IEEE Access, 6(1), 245–261.

    Article  Google Scholar 

  15. Luo, Y., Hong, P., Su, R., & Xue, K. (2017). Resource allocation for energy harvesting-powered D2D communication underlaying cellular networks. IEEE Transactions on Vehicular Technology, 66(11), 10486–10498.

    Article  Google Scholar 

  16. Sakr, A. H., & Hossain, E. (2015). Cognitive and energy harvesting-based D2D communication in cellular networks: Stochastic geometry modeling and analysis. IEEE Transactions on Communications, 63(5), 1867–1880.

    Article  Google Scholar 

  17. Yang, H. H., Lee, J., & Quek, T. Q. S. (2016). Heterogeneous cellular network with energy harvesting-based D2D communication. IEEE Transactions on Wireless Communications, 15(2), 1406–1419.

    Article  Google Scholar 

  18. Doan, T. X., Hoang, T. M., Duong, T. Q., et al. (2017). Energy harvesting-based D2D communications in the presence of interference and ambient RF sources. IEEE Access, 5, 5224–5234.

    Article  Google Scholar 

  19. Xie, L., Xu, J., Zhang, R. (2018). Throughput maximization for UAV-enabled wireless powered communication networks. IEEE Vehicular Technology Conference (VTC Spring), pp. 1–7.

  20. Zeng, Y., Zhang, R., & Lim, T. J. (2016). Throughput maximization for UAV enabled mobile relaying systems. IEEE Transactions on Communications, 64(12), 4983–4996.

    Article  Google Scholar 

  21. Wu, Q., Zeng, Y., & Zhang, R. (2018). Joint trajectory and communication design for multi-UAV enabled wireless networks. IEEE Transactions on Wireless Communications, 17(3), 2109–2121.

    Article  Google Scholar 

  22. Wang, H., Wang, J., Ding, G., et al. (2018). Resource allocation for energy harvesting-powered D2D communication underlaying UAV-assisted networks. IEEE Transactions on Green Communications and Networking, 2(1), 14–24.

    Article  Google Scholar 

  23. Xu, J., & Guo, C. (2018). Resource allocation for real-time D2D communications underlaying cellular networks. IEEE Transactions on Mobile Computing, 18(4), 960–973.

    Article  Google Scholar 

  24. Mozaffari, M., Saad, W., Bennis, M., & Debbah, M. (2016). Unmanned aerial vehicle with underlaid device-to-device communications: Performance and tradeoffs. IEEE Transactions on Wireless Communications, 15(6), 3949–3963.

    Article  Google Scholar 

  25. Hourani, A. A., Kandeepan, S., Jamalipour, A. (2014). Modeling air-toground path loss for low altitude platforms in urban environments, IEEE Global Communications Conference (GLOBECOM) pp. 2898-2904.

  26. Garey, M.R. (1979). Johnson, D.S. Computer and intractability: A guide to the theory of NP-completeness. pp. 245–248. W.H. Freeman and Company: New York,

  27. Lei, M., Zhang, X., Zhang, T., et al. (2016). Successive interference cancellation for throughput maximization in wireless powered communication networks. IEEE Vehicular Technology Conference (VTC Fall), pp. 1–6.

Download references

Acknowledgements

This research was supported in part by the Fundamental Research Funds for the Central Universities (GK202003076), in part by the Research Start Up Fund in universities (100117-1110011057). The work of Dr.Scott Fowler has been supported by the strategic innovation programme Smart Built Environment, funded by Vinnova, Formas and Energimyndigheten.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Lei.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

A concave programming problem needs to satisfy two conditions: all the constraints are linear conditions and the objective function is a concave function. All the constraints are linear in problem [M2]. We only need to prove that the objective function is a concave function. Let \(f(\varvec{a},\varvec{t})\) denote the objective function, where a and t are variable vectors that contain the variables \(a_{ij}\) and \(t_{ij}\) respectively, \(\forall j\in \{1,2,,N\}\) and \(\forall i\in \{2,,T\}\). To solve the first derivative of the variables \(a_{ij}\) and \(t_{ij}\), we use

$$\begin{aligned} \frac{{\partial f(\varvec{a},\varvec{t})}}{{\partial {a_{ij}}}} = \frac{{{h_j}{t_{ij}}W{{\hat{\mu }}_i}}}{{{a_{ij}}{h_j}ln2 + {t_{ij}}W{{\hat{\mu }}_i}\delta ln2}} \end{aligned}$$
(15)
$$\begin{aligned} \frac{{\partial f({{\varvec{a}}},{{\varvec{t}}})}}{{\partial {t_{ij}}}} = \frac{{W{{\hat{\mu }}_i}( - {a_{ij}}{h_j} + ({a_{ij}}{h_j} + {t_{ij}}W\delta {{\hat{\mu }}_i}))}}{{({a_{ij}}{h_j} + {t_{ij}}W\delta {{\hat{\mu }}_i})ln2}} \nonumber \\ *ln[1 + \frac{{{a_{ij}}{h_j}}}{{{t_{ij}}W{{\hat{\mu }}_i}\delta }}] \end{aligned}$$
(16)

From Eqs. (15) and (16), \(\frac{{{\partial ^2}f(\varvec{a},\varvec{t})}}{{\partial {a_{ij}}\partial {a_{zk}}}}\) and \(\frac{{{\partial ^2}f(\varvec{a},\varvec{t})}}{{\partial {a_{ij}}\partial {t_{zk}}}}\) are zero as \(i \ne z\) or \(j\ne k\). When \(i=z\) and \(j=k\), we can obtain the second-order partial derivative of the function \(f(\varvec{a},\varvec{t})\) as follows:

$$\begin{aligned} \frac{{{\partial ^2}f(\varvec{a},\varvec{t})}}{{\partial {a_{ij}}^2}} = - \frac{{{h_j}^2{t_{ij}}W{{\hat{\mu }}_i}}}{{ln2{{({a_{ij}}{h_j} + {t_{ij}}W\delta {{\hat{\mu }}_i})}^2}}} \end{aligned}$$
(17)
$$\begin{aligned} \frac{{{\partial ^2}f(\varvec{a},\varvec{t})}}{{\partial {t_{ij}}^2}} = - \frac{{{a_{ij}}^2{h_j}^2W{{\hat{\mu }}_i}}}{{ln2{t_{ij}}{{({a_{ij}}{h_j} + {t_{ij}}W\delta {{\hat{\mu }}_i})}^2}}} \end{aligned}$$
(18)
$$\begin{aligned} \frac{{{\partial ^2}f(\varvec{a},\varvec{t})}}{{\partial {t_{ij}}\partial {a_{ij}}}} = \frac{{{a_{ij}}{h_j}^2W{{\hat{\mu }}_i}}}{{ln2{{({a_{ij}}{h_j} + {t_{ij}}W\delta {{\hat{\mu }}_i})}^2}}} \end{aligned}$$
(19)

We use a Hessian matrix to analyze the objective function. Let \({{H}}({a_{ij}},{t_{ij}})\) represent the Hessian matrix corresponding to the variables \(a_{ij}\) and \(t_{ij}\). From Eqs. (17)–(19), we have

$$\begin{aligned}&{{H}}({a_{ij}},{t_{ij}}) = \nonumber \\&\left[ {\begin{array}{*{20}{c}} { - \frac{{{h_j}^2{t_{ij}}W{{\hat{\mu }}_i}}}{{ln2{{({a_{ij}}{h_j} + {t_{ij}}W\delta {{\hat{\mu }}_i})}^2}}}}&{}{\frac{{{a_{ij}}{h_j}^2W{{\hat{\mu }}_i}}}{{ln2{{({a_{ij}}{h_j} + {t_{ij}}W\delta {{\hat{\mu }}_i})}^2}}}}\\ {\frac{{{a_{ij}}{h_j}^2W{{\hat{\mu }}_i}}}{{ln2{{({a_{ij}}{h_j} + {t_{ij}}W\delta {{\hat{\mu }}_i})}^2}}}}&{}{ - \frac{{{a_{ij}}^2{h_j}^2W{{\hat{\mu }}_i}}}{{ln2{t_{ij}}{{({a_{ij}}{h_j} + {t_{ij}}W\delta {{\hat{\mu }}_i})}^2}}}} \end{array}} \right] \end{aligned}$$
(20)

We use \({{{H}}^{uv}}({a_{ij}},{t_{ij}})\) to represent the value in row u and column v of matrix \(H(a_{ij},t_{ij})\). Since all variables \(a_{ij}\) and \(t_{ij}\) are nonnegative variables in Eq. (20), \({{{H}}^{11}}({a_{ij}},{t_{ij}})\) is nonpositive. Determining \(det(H(a_{ij},t_{ij}))\) of the matrix yields

$$\begin{aligned} det(H(a_{ij},t_{ij}))=0 \end{aligned}$$
(21)

From Eqs. (20) and (21), \(H(a_{ij},t_{ij})\) is negative semi-definite. We use H to represent the Hessian matrix of the objective function, which can be expressed as Eq. (22).

$$\begin{aligned}{H} = \left( {\begin{array}{*{20}{c}} {\begin{array}{*{20}{c}} {{H}({a_{11}},{t_{11}}),}&{}{{H}\left( {{a_{11}},{t_{12}}} \right) = 0,}\\ {0,}&{}{{H}\left( {{a_{12}},{t_{12}}} \right) ,} \end{array}}&{}{\begin{array}{*{20}{c}} \ldots &{}{{{H}}\left( {{a_{11}},{t_{NT}}} \right) = 0}\\ {0,}&{} \ldots \end{array}}\\ {\begin{array}{*{20}{c}} \vdots &{}{ \ddots }\\ 0&{}{ \ldots } \end{array}}&{}{\begin{array}{*{20}{c}} \ddots &{} \vdots \\ \ldots &{}{{{H}}\left( {{a_{NT}},{t_{NT}}} \right) } \end{array}} \end{array}} \right) \end{aligned}$$
(22)

From Eq. (22), the matrix H is negative semi-definite. Therefore, \(f(\varvec{a},\varvec{t})\) is a concave function. Problem [M2] is a concave programming problem.

Appendix B

The constraint is a linear condition in problem [M5]. Therefore, we only need to prove that the objective function is a concave function. We use \(f(\varvec{\mu })\) to denote the objective function and obtain the first derivative of the function as follows:

$$\begin{aligned} \frac{\partial }{{\partial {\mu _i}}}f( \varvec{\mu } ) = \mathop \sum \limits _{j = 1}^N \left( - \frac{{W{{\hat{t}}_{ij}}{{\hat{P}}_{ij}}{h_j}}}{{( {{{\hat{P}}_{ij}}{h_j} + {\mu _i}W\delta })\ln 2}} + W{{\hat{t}}_{ij}}\log \left( {1 + \frac{{{{\hat{P}}_{ij}}{h_j}}}{{{\mu _i}W\delta }}}\right) \right) \end{aligned}$$
(23)

Based on the Eq. (23), we find the second order of the function \(f(\varvec{\mu })\) and obtain

$$\begin{aligned} \frac{{{\partial ^2}f(\varvec{\mu } )}}{{\partial {\mu _i}\partial {\mu _j}}} = 0, i \ne j, \end{aligned}$$
(24)
$$\begin{aligned} \frac{{{\partial ^2}f(\varvec{\mu } )}}{{\partial {\mu _i}\partial {\mu _j}}} = - \mathop \sum \limits _{j = 1}^N \frac{{{{\hat{t}}_{ij}}{{\hat{P}}_{ij}}^2{h_j}^2}}{{{\mu _i}^2W{{(1 + \frac{{{{\hat{P}}_{ij}}{h_j}}}{{{\mu _i}W\delta }})}^2}{\delta ^2}ln2}}, i = j. \end{aligned}$$
(25)

From Eqs. (24) and (25), the Hessian matrix of the function \(f(\varvec{\mu })\) can be expressed as Eq. (26).

$$\begin{aligned} \mathrm{{H}} = \left( {\begin{array}{*{20}{c}} {\begin{array}{*{20}{c}} { - \mathop \sum \limits _{j = 1}^N \frac{{{{\hat{t}}_{1j}}{{\hat{P}}_{1j}}^2{h_j}^2}}{{{\mu _1}^2W{{(1 + \frac{{{{\hat{P}}_{ij}}{h_j}}}{{{\mu _1}W\delta }})}^2}{\delta ^2}ln2}},}&{}{0,}\\ {0,}&{}{ - \mathop \sum \limits _{j = 1}^N \frac{{{{\hat{t}}_{2j}}{{\hat{P}}_{2j}}^2{h_j}^2}}{{{\mu _2}^2W{{(1 + \frac{{{{\hat{P}}_{2j}}{h_j}}}{{{\mu _2}W\delta }})}^2}{\delta ^2}ln2}},} \end{array}}&{}{\begin{array}{*{20}{c}} \ldots &{}{0}\\ {0,}&{} \ldots \end{array}}\\ {\begin{array}{*{20}{c}} \vdots &{}{ \ddots }\\ 0&{}{ \ldots } \end{array}}&{}{\begin{array}{*{20}{c}} \ddots &{} \vdots \\ \ldots &{}{ - \mathop \sum \limits _{j = 1}^N \frac{{{{\hat{t}}_{Tj}}{{\hat{P}}_{Tj}}^2{h_j}^2}}{{{\mu _T}^2W{{(1 + \frac{{{{\hat{P}}_{Tj}}{h_j}}}{{{\mu _T}W\delta }})}^2}{\delta ^2}ln2}}} \end{array}} \end{array}} \right) . \end{aligned}$$
(26)

It can be seen that the matrix is negative semi-definite from Eq. (26). Thus, problem [M5] is a concave programming problem.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, M., Zhang, X., Yu, B. et al. Throughput maximization for UAV-assisted wireless powered D2D communication networks with a hybrid time division duplex/frequency division duplex scheme. Wireless Netw 27, 2147–2157 (2021). https://doi.org/10.1007/s11276-021-02562-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-021-02562-w

Keywords

Navigation