Skip to main content
Log in

A parallel compact cat swarm optimization and its application in DV-Hop node localization for wireless sensor network

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Cat swarm optimization (CSO) has been applied to a variety of fields because of the better capacity of searching for optimum and higher robustness. However, the poor convergency and larger memory consumption are still core defects, which restricts the efficiency of optimization to a larger extent. A new heuristic algorithm named Parallel Compact Cat Swarm Optimization (PCCSO) with three separate communication strategies and the concept of the compact are presented in this article. The advantage of PCCSO is not only reflected in enhancing the ability of local search, but also in saving the computer memory. The experimental results on CEC2013 benchmark functions demonstrate that the PCCSO is always superior to PSO, CSO, and improved CSO in getting convergent. Then, the PCCSO is applied to DV-Hop to effectively improve the localization accuracy of unknown nodes while also saving WSN memory. The experimental results based on PCCSO from the different number of sensor nodes also illustrate that the PCCSO-DV-Hop shows a lower localization error compared to other optimization algorithms based on DV-Hop.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Wang, H., Zhang, G., Mingjie, E., & Sun, N. (2011). A novel intrusion detection method based on improved SVM by combining PCA and PSO. Wuhan University Journal of Natural Sciences, 16(5), 409.

    Article  Google Scholar 

  2. Qin, S., Sun, C., Zhang, G., He, X., & Tan, Y. (2020). A modified particle swarm optimization based on decomposition with different ideal points for many-objective optimization problems. Complex & Intelligent Systems, 6, 263274.

    Article  Google Scholar 

  3. Poli, R., Kennedy, J., & Blackwell, T. (2007). Particle swarm optimization. Swarm Intelligence, 1(1), 33–57.

    Article  Google Scholar 

  4. Wang, H., Liang, M., Sun, C., Zhang, G., & Xie, L. (2020). Multiple-strategy learning particle swarm optimization for large-scale optimization problems. Complex & Intelligent Systems, 1–16.

  5. Mirjalili, S., Mirjalili, S. M., & Lewis, A. (2014). Grey wolf optimizer. Advances in Engineering Software, 69, 46–61.

    Article  Google Scholar 

  6. Pan, J. S., Hu, P., & Chu, S. C. (2019). Novel parallel heterogeneous meta-heuristic and its communication strategies for the prediction of wind power. Processes, 7(11), 845.

    Article  Google Scholar 

  7. Hu, P., Pan, J., & Chu, S. (2020). Improved binary grey wolf optimizer and its application for feature selection. Knowledge Based Systems, 105746.

  8. Cheng, M. Y., & Prayogo, D. (2014). Symbiotic organisms search: A new metaheuristic optimization algorithm. Computers & Structures, 139, 98–112.

    Article  Google Scholar 

  9. Du, Z. G., Pan, J. S., Chu, S. C., Luo, H. J., & Hu, P. (2020). Quasi-affine transformation evolutionary algorithm with communication schemes for application of RSSI in wireless sensor networks. IEEE Access, 8, 8583–8594.

    Article  Google Scholar 

  10. Pan, J. S., Kong, L., Sung, T. W., Tsai, P. W., & Snášel, V. (2018). A clustering scheme for wireless sensor networks based on genetic algorithm and dominating set. Journal of Internet Technology, 19(4), 1111–1118.

    Google Scholar 

  11. Dorigo, M., & Di Caro, G. (1999). Ant colony optimization: A new meta-heuristic. In Proceedings of the 1999 congress on evolutionary computation-CEC99 (Cat. No. 99TH8406) (Vol. 2, pp. 1470–1477). IEEE.

  12. Chu, S. C., Tsai, P. W., & Pan, J. S. (2006). Cat swarm optimization. In Pacific Rim international conference on artificial intelligence (pp. 854–858). Springer.

  13. Neri, F., Mininno, E., & Iacca, G. (2013). Compact particle swarm optimization. Information Sciences, 239, 96–121.

    Article  MathSciNet  Google Scholar 

  14. Harik, G. R., Lobo, F. G., & Goldberg, D. E. (1999). The compact genetic algorithm. IEEE Transactions on Evolutionary Computation, 3(4), 287–297.

    Article  Google Scholar 

  15. Mininno, E., Neri, F., Cupertino, F., & Naso, D. (2010). Compact differential evolution. IEEE Transactions on Evolutionary Computation, 15(1), 32–54.

    Article  Google Scholar 

  16. Tian, A. Q., Chu, S. C., Pan, J. S., Cui, H., & Zheng, W. M. (2020). A compact pigeon-inspired optimization for maximum short-term generation mode in cascade hydroelectric power station. Sustainability, 12(3), 767.

    Article  Google Scholar 

  17. Pan, J. S., Dao, T. K., et al. (2019). A novel improved bat algorithm based on hybrid parallel and compact for balancing an energy consumption problem. Information, 10(6), 194.

    Article  Google Scholar 

  18. Pan, J. S., Dao, T. K., et al. (2019). A compact bat algorithm for unequal clustering in wireless sensor networks. Applied Sciences, 9(10), 1973.

    Article  Google Scholar 

  19. Pan, J. S., Song, P. C., Chu, S. C., & Peng, Y. J. (2020). Improved compact cuckoo search algorithm applied to location of drone logistics hub. Mathematics, 8(3), 333.

    Article  Google Scholar 

  20. Zhao, M. (2018). A novel compact cat swarm optimization based on differential method. Enterprise Information Systems, 14, 1–25.

    Google Scholar 

  21. Xue, X., & Pan, J. S. (2018). A compact co-evolutionary algorithm for sensor ontology meta-matching. Knowledge and Information Systems, 56(2), 335–353.

    Article  Google Scholar 

  22. Chu, S. C., Xue, X., Pan, J. S., & Wu, X. (2020). Optimizing ontology alignment in vector space. Journal of Internet Technology, 21(1), 15–22.

    Google Scholar 

  23. Song, P. C., Pan, J. S., & Chu, S. C. (2020). A parallel compact cuckoo search algorithm for three-dimensional path planning. Applied Soft Computing, 106443.

  24. Pan, J. S., Kong, L., Sung, T. W., Tsai, P. W., & Snášel, V. (2018). \(\alpha \)-Fraction first strategy for hierarchical model in wireless sensor networks. Journal of Internet Technology, 19(6), 1717–1726.

    Google Scholar 

  25. Chen, C. H., Lee, C. A., & Lo, C. C. (2016). Vehicle localization and velocity estimation based on mobile phone sensing. IEEE Access, 4, 803–817.

    Article  Google Scholar 

  26. Wang, J., Gao, Y., Wang, K., Sangaiah, A. K., & Lim, S. J. (2019). An affinity propagation-based self-adaptive clustering method for wireless sensor networks. Sensors, 19(11), 2579.

    Article  Google Scholar 

  27. Halder, S., & Ghosal, A. (2016). A survey on mobile anchor assisted localization techniques in wireless sensor networks. Wireless Networks, 22(7), 2317–2336.

    Article  Google Scholar 

  28. Kulkarni, V. R., Desai, V., & Kulkarni, R. V. (2019). A comparative investigation of deterministic and metaheuristic algorithms for node localization in wireless sensor networks. Wireless Networks, 25(5), 2789–2803.

    Article  Google Scholar 

  29. Zaruba, G. V., Huber, M., Kamangar, F. A., & Chlamtac, I. (2007). Indoor location tracking using RSSI readings from a single Wi-Fi access point. Wireless Networks, 13(2), 221–235.

    Article  Google Scholar 

  30. GhasemAghaei, R., Rahman, M., Gueaieb, W. & El Saddik, A. (2007). Ant colony-based reinforcement learning algorithm for routing in wireless sensor networks. 2007 IEEE instrumentation & measurement technology conference IMTC 2007 (pp. 1–6). IEEE.

  31. Shi, H. Y., Wang, W. L., Kwok, N. M., & Chen, S. Y. (2012). Game theory for wireless sensor networks: A survey. Sensors, 12(7), 9055–9097.

    Article  Google Scholar 

  32. Sikeridis, D., Tsiropoulou, E. E., Devetsikiotis, M., & Papavassiliou, S. (2018). Wireless powered Public Safety IoT: A UAV-assisted adaptive-learning approach towards energy efficiency. Journal of Network and Computer Applications, 123, 69–79.

    Article  Google Scholar 

  33. Fragkos, G., Apostolopoulos, P. A., & Tsiropoulou, E. E. (2018). ESCAPE: Evacuation strategy through clustering and autonomous operation in public safety systems. Future Internet, 11(1), 20.

    Article  Google Scholar 

  34. Huang, X. L., Ma, X., & Hu, F. (2018). Machine learning and intelligent communications. Mobile Networks and Applications, 23(1), 68–70.

    Article  Google Scholar 

  35. Kong, L., Chen, C. M., Shih, H. C., Lin, C. W., & Pan, J. S. (2014). An energy-aware routing protocol using cat swarm optimization for wireless sensor networks. Lecture Notes in Electrical Engineering, 260, 311–318.

    Article  Google Scholar 

  36. Temel, S., Unaldi, N., & Kaynak, O. (2013). On deployment of wireless sensors on 3-D terrains to maximize sensing coverage by utilizing cat swarm optimization with wavelet transform. IEEE Transactions on Systems Man & Cybernetics Systems, 44(1), 111–120.

    Article  Google Scholar 

  37. Kasana, R., & Kumar, S. (2017). A geographic routing algorithm based on cat swarm optimization for vehicular ad-hoc networks (pp. 86–90).

  38. Kong, L., Pan, J. S., Tsai, P. W., Vaclav, S., & Ho, J. H. (2015). A balanced power consumption algorithm based on enhanced parallel cat swarm optimization for wireless sensor network. International Journal of Distributed Sensor Networks, 11(3), 729680.

    Article  Google Scholar 

  39. Kanwar, V., & Kumar, A. (2020). DV-Hop localization methods for displaced sensor nodes in wireless. Wireless Networks, 1–12.

  40. Gumaida, B. F., & Luo, J. (2019). Novel localization algorithm for wireless sensor network based on intelligent water drops. Wireless Networks, 25(2), 597–609.

    Article  Google Scholar 

  41. Tsai, P. W., Pan, J. S., Chen, S. M., & Liao, B. Y. (2012). Enhanced parallel cat swarm optimization based on the Taguchi method. Expert Systems with Applications, 39(7), 6309–6319.

    Article  Google Scholar 

  42. Chang, J. F., Chu, S. C., Roddick, J. F., & Pan, J. S. (2005). A parallel particle swarm optimization algorithm with communication strategies. Journal of Information ENCE & Engineering, 21(4), 809–818.

    Google Scholar 

  43. Liang, J., Qu, B., Suganthan, P., & Hernández-Díaz, A. G. (2013). Problem definitions and evaluation criteria for the CEC 2013 special session on real-parameter optimization. Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou, China and Nanyang Technological University, Singapore, Technical Report (Vol. 201212, No. 34, pp. 281–295).

  44. Chen, X., & Zhang, B. (2012). Improved DV-Hop node localization algorithm in wireless sensor networks. International Journal of Distributed Sensor Networks, 2012(6), 1018–1020.

    Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China (No. 61501106), Science and Technology Foundation of Jilin Province (Nos. 201801010-39JC, JJKH20200116KJ), and Science and Technology Foundation of Jilin City (No. 201831775).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeng-Shyang Pan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Gao, M., Pan, JS. et al. A parallel compact cat swarm optimization and its application in DV-Hop node localization for wireless sensor network. Wireless Netw 27, 2081–2101 (2021). https://doi.org/10.1007/s11276-021-02563-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-021-02563-9

Keywords

Navigation