Skip to main content
Log in

Non-coherent localization with geometric topology of wireless sensor network under target and anchor node perturbations

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

This paper investigates non coherent localization of an unknown target node in presence of a symmetrically opposite mirror node while the transmitter anchor node is perturbed under duress from external factors in a wireless sensor network. By limiting the transmitter anchor node translocation to a straight line, the resulting anchor-target geometry is exploited to mitigate the effects of mirror node and the perturbations of the transmitter node. Signal model for unperturbed and perturbed scenario is described. Fisher information vector expression is derived with respect to the polygonal geometry. Multistatic technique is utilized to extract fisher information from every possible link between the transmitter, receiver and unknown target node. The loss of location information due to undesirable aspect of the polygonal geometry is derived, following which a suitable expression is obtained to mitigate these effects. Solutions to algebraic functions involving perturbed anchor and symmetric geometry are developed. Geometric dilution of precision in terms of internodal angles is established. Numerical results corroborate theoretical analysis to achieve localization error comparable to sensor networks devoid of such perturbations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Isler, V., & Bajcsy, R. (2006). The sensor selection problem for bounded uncertainty sensing models. IEEE Transactions on Automation Science and Engineering, 3(4), 372–381. https://doi.org/10.1109/TASE.2006.876615

    Article  Google Scholar 

  2. Dai, Z., Wang, G., Jin, X., & Lou, X. (2020). Nearly optimal sensor selection for TDOA-based source localization in wireless sensor networks. IEEE Transactions on Vehicular Technology, 9545(c), 1–1. https://doi.org/10.1109/tvt.2020.3011118

    Article  Google Scholar 

  3. Yang, L., Gao, H., Ling, Y., Zhou, S., & Li, B. (2020). 3D joint estimation of position and velocity for a moving target in multistatic radar system by VHC-2WLS algorithm. IEEE Communications Letters, 7798(c), 1–1. https://doi.org/10.1109/lcomm.2020.2997829

    Article  Google Scholar 

  4. Jia, M., Khattak, S. B. A., Guo, Q., Gu, X., & Lin, Y. (2019). Access point optimization for reliable indoor localization systems. IEEE Transactions on Reliability. https://doi.org/10.1109/TR.2019.2955748

    Article  Google Scholar 

  5. Wang, J., Wang, G., Li, B., Yang, H., Hu, Y., & Schmeink, A. (2020). Massive MIMO two-way relaying systems with SWIPT in IoT networks. IEEE Internet of Things Journal, XX(X), 1–1. https://doi.org/10.1109/jiot.2020.3032446

    Article  Google Scholar 

  6. Iliev, N., & Paprotny, I. (2015). Review and comparison of spatial localization methods for low-power wireless sensor networks. IEEE Sensors Journal, 15(10), 5971–5987. https://doi.org/10.1109/JSEN.2015.2450742

    Article  Google Scholar 

  7. Nguyen, N. H., & Dogancay, K. (2016). Optimal geometry analysis for multistatic TOA localization. IEEE Transactions on Signal Processing, 64(16), 4180–4193. https://doi.org/10.1109/TSP.2016.2566611

    Article  MathSciNet  MATH  Google Scholar 

  8. Wu, Y. I., Wang, H., & Zheng, X. (2016). WSN localization using RSS in three-dimensional space—A geometric method with closed-form solution. IEEE Sensors Journal, 16(11), 4397–4404. https://doi.org/10.1109/JSEN.2016.2547444

    Article  Google Scholar 

  9. Naseri, H., & Koivunen, V. (2017). Cooperative simultaneous localization and mapping by exploiting multipath propagation. IEEE Transactions on Signal Processing, 65(1), 200–211. https://doi.org/10.1109/TSP.2016.2616324

    Article  MathSciNet  MATH  Google Scholar 

  10. Wei, H. W., Peng, R., Wan, Q., Chen, Z. X., & Ye, S. F. (2010). Multidimensional scaling analysis for passive moving target localization with TDOA and FDOA measurements. IEEE Transactions on Signal Processing, 58(3), 1677–1688. https://doi.org/10.1109/TSP.2009.2037666

    Article  MathSciNet  MATH  Google Scholar 

  11. Xu, Y., Li, B., Zhao, N., Chen, Y., Wang, G., Ding, Z., & Wang, X. (2021). Coordinated direct and relay transmission with NOMA and network coding in Nakagami- m fading channels. IEEE Transactions on Communications, 69(1), 207–222. https://doi.org/10.1109/TCOMM.2020.3025555

    Article  Google Scholar 

  12. Ghari, P. M., Shahbazian, R., & Ghorashi, S. A. (2019). Maximum entropy-based semi-definite programming for wireless sensor network localization. IEEE Internet of Things Journal, 6(2), 3480–3491. https://doi.org/10.1109/JIOT.2018.2885959

    Article  Google Scholar 

  13. Hu, Y., & Leus, G. (2017). Robust differential received signal strength-based localization. IEEE Transactions on Signal Processing, 65(12), 3261–3276. https://doi.org/10.1109/TSP.2017.2684741

    Article  MathSciNet  MATH  Google Scholar 

  14. Li, B., Yang, J., Yang, H., Liu, G., Ma, R., & Peng, X. (2019). Decode-and-forward cooperative transmission in wireless sensor networks based on physical-layer network coding. Wireless Networks. https://doi.org/10.1007/s11276-019-02092-6

    Article  Google Scholar 

  15. Feng, Y., & Li, H. X. (2020). Dynamic spatial-independent-component-analysis-based abnormality localization for distributed parameter systems. IEEE Transactions on Industrial Informatics, 16(5), 2929–2936. https://doi.org/10.1109/TII.2019.2900226

    Article  Google Scholar 

  16. Zhang, Y., & Ho, D. (2020). Multistatic moving object localization by a moving transmitter of unknown location and offset. IEEE Transactions on Signal Processing, c, 1–1. https://doi.org/10.1109/TSP.2020.3008752

    Article  MathSciNet  Google Scholar 

  17. Ho, K. C., Lu, X., & Kovavisaruch, L. (2007). Source localization using TDOA and FDOA measurements in the presence of receiver location errors: Analysis and solution. IEEE Transactions on Signal Processing, 55(2), 684–696. https://doi.org/10.1109/TSP.2006.885744

    Article  MathSciNet  MATH  Google Scholar 

  18. Luo, C., Casaseca-De-La-Higuera, P., McClean, S., Parr, G., & Ren, P. (2018). Characterization of received signal strength perturbations using allan variance. IEEE Transactions on Aerospace and Electronic Systems, 54(2), 873–889. https://doi.org/10.1109/TAES.2017.2768278

    Article  Google Scholar 

  19. Bayat, M., Crasta, N., Aguiar, A. P., & Pascoal, A. M. (2016). Range-based underwater vehicle localization in the presence of unknown ocean currents: Theory and experiments. IEEE Transactions on Control Systems Technology, 24(1), 122–139. https://doi.org/10.1109/TCST.2015.2420636

    Article  Google Scholar 

  20. Aditya, S., Dhillon, H. S., Molisch, A. F., Buehrer, R. M., & Behairy, H. M. (2019). Characterizing the impact of SNR heterogeneity on time-of-arrival-based localization outage probability. IEEE Transactions on Wireless Communications, 18(1), 637–649. https://doi.org/10.1109/TWC.2018.2883726

    Article  Google Scholar 

  21. Xiong, J., Cheong, J., Xiong, Z., Dempster, A. G., List, M., Woske, F., & Rievers, B. (2020). Carrier-phase-based multi-vehicle cooperative positioning using V2V sensors. IEEE Transactions on Vehicular Technology, 2(2), 1–1. https://doi.org/10.1109/tvt.2020.3004832

    Article  Google Scholar 

  22. Shen, Y., Wymeersch, H., & Win, M. Z. (2010). Fundamental limits of wideband localization—Part II: Cooperative networks. IEEE Transactions on Information Theory, 56(10), 4981–5000. https://doi.org/10.1109/TIT.2010.2059720

    Article  MathSciNet  MATH  Google Scholar 

  23. Kilani, M. B., Gagnon, G., & Gagnon, F. (2018). Multistatic radar placement optimization for cooperative radar-communication systems. IEEE Communications Letters, 22(8), 1576–1579. https://doi.org/10.1109/LCOMM.2018.2837913

    Article  Google Scholar 

  24. Morales, J. J., & Kassas, Z. M. (2018). Optimal collaborative mapping of terrestrial transmitters: receiver placement and performance characterization. IEEE Transactions on Aerospace and Electronic Systems, 54(2), 992–1007. https://doi.org/10.1109/TAES.2017.2773238

    Article  Google Scholar 

  25. Oshman, Y., & Davidson, P. (1999). Optimization of observer trajectories for bearings-only target localization. IEEE Transactions on Aerospace and Electronic Systems, 35(3), 892–902. https://doi.org/10.1109/7.784059

    Article  Google Scholar 

  26. Bayram, H., Hook, J. V., & Isler, V. (2016). Gathering bearing data for target localization. IEEE Robotics and Automation Letters, 1(1), 369–374. https://doi.org/10.1109/LRA.2016.2521387

    Article  Google Scholar 

  27. Rui, L., & Ho, K. (2015). Efficient closed-form estimators for multistatic sonar localization. IEEE Transactions on Aerospace and Electronic Systems, 51(1), 600–614. https://doi.org/10.1109/TAES.2014.140482

    Article  Google Scholar 

  28. Chen, L., Xiong, X., Liu, K., Wang, C., Zhou, W., Cheng, Y., & Liu, Y. (2014). POPA: Localising nodes by splitting PLA with nth-hop anchor neighbours. Electronics Letters, 50(13), 964–966. https://doi.org/10.1049/el.2013.4046

    Article  Google Scholar 

  29. Liu, Y., Liu, H., Wang, L., & Bi, G. (2020). Target localization in high-coherence multipath environment based on low-rank decomposition and sparse representation. IEEE Transactions on Geoscience and Remote Sensing. https://doi.org/10.1109/tgrs.2020.2975218

    Article  Google Scholar 

  30. Shoari, A., & Seyedi, A. (2014). On localization of a non-cooperative target with non-coherent binary detectors. IEEE Signal Processing Letters, 21(6), 746–750. https://doi.org/10.1109/LSP.2014.2314220

    Article  Google Scholar 

  31. Vin, I., Gaillot, D. P., Laly, P., Lienard, M., & Degauque, P. (2014). Multipath component distance-based fingerprinting technique for non-cooperative outdoor localization in NLOS scenarios. IEEE Transactions on Antennas and Propagation, 62(9), 4794–4798. https://doi.org/10.1109/TAP.2014.2327142

    Article  MATH  Google Scholar 

  32. Yang, Y., Zhao, Y., & Kyas, M. (2013). Weighted least-squares by bounding-box (B-WLS) for NLOS mitigation of indoor localization. IEEE Vehicular Technology Conference. https://doi.org/10.1109/VTCSpring.2013.6692811

    Article  Google Scholar 

  33. Tomic, S., Beko, M., & Tuba, M. (2019). A linear estimator for network localization using integrated RSS and AOA measurements. IEEE Signal Processing Letters, 26(3), 405–409. https://doi.org/10.1109/LSP.2019.2892225

    Article  Google Scholar 

  34. Guang, X., Fu, F. W., & Zhang, Z. (2016). Variable-rate linear network error correction MDS codes. IEEE Transactions on Information Theory, 62(6), 3147–3164. https://doi.org/10.1109/TIT.2016.2550522

    Article  MathSciNet  MATH  Google Scholar 

  35. Nesterov, Y., & Nemirovskii, A. (1994). Interior-point polynomial algorithms in convex programming. Interior-Point Polynomial Algorithms in Convex Programming. https://doi.org/10.1137/1.9781611970791

    Article  MATH  Google Scholar 

  36. Zou, Y., & Liu, H. (2020). TDOA localization with unknown signal propagation speed and sensor position errors. IEEE Communications Letters, 24(5), 1024–1027. https://doi.org/10.1109/LCOMM.2020.2968434

    Article  Google Scholar 

  37. Wang, T., Xiong, H., Ding, H., & Zheng, L. (2020). TDOA-based joint synchronization and localization algorithm for asynchronous wireless sensor networks. IEEE Transactions on Communications, 68(5), 3107–3124. https://doi.org/10.1109/TCOMM.2020.2973961

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajeev Arya.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prateek, Arya, R. & Verma, A.K. Non-coherent localization with geometric topology of wireless sensor network under target and anchor node perturbations. Wireless Netw 27, 2271–2286 (2021). https://doi.org/10.1007/s11276-021-02575-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-021-02575-5

Keywords

Navigation