Skip to main content
Log in

Beam steering using OAM waves generated by a concentric circular loop antenna array

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Orbital Angular Momentum (OAM) is an attractive feature of electromagnetic waves that gains great research attention in several areas in radio and optics. This paper describes a superposition of OAM waves of different orders for single/multi-beam steering in the transverse direction in communication and radar-sensing applications. A new design of the antenna is proposed. The main body of the antenna consists of a concentric circular loop antenna array that is excited by a traveling wave current. This design overcomes some of the limitations challenging the use of multi-orders OAM waves in beam steering, in particular the need for placing more than one OAM-order generator in the same plane. The proposed method overcomes this limitation as many loops of different sizes could be simply placed in one plane. The feeder of the antenna, on another hand, is designed using two loops with one being a parasitic element. This parasitic element-based design shows great enhancement to the bandwidth allowing the antenna to serve over a wide range of applications. Various OAM mode groupings using the superimposed OAM waves are demonstrated here via theoretical calculations, and beamforming is validated with full-wave numerical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Allen, L., Beijersbergen, M. W., Spreeuw, R. J. C., & Woerdman, J. P. (1992). Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Physical Review A, 45, 8185–8189.

    Article  Google Scholar 

  2. Chen, R., Zhou, H., Moretti, M., Wang, X., & Li, J. (2019). Orbital angular momentum waves: generation, detection and emerging applications. IEEE Communications Surveys and Tutorials, 5, 1–1. https://doi.org/10.1109/comst.2019.2952453

    Article  Google Scholar 

  3. Cheng, W., Zhang, W., Jing, H., Gao, S., & Zhang, H. (2018). Orbital angular momentum for wireless communications. IEEE Wireless Communications, 26, 100–107. https://doi.org/10.1109/MWC.2017.1700370

    Article  Google Scholar 

  4. Uribe-Patarroyo, N., Fraine, A., Simon, D. S., Minaeva, O., & Sergienko, A. V. (2013). Object identification using correlated orbital angular momentum states. Physical Review Letters, 2, 110. https://doi.org/10.1103/PhysRevLett.110.043601

    Article  Google Scholar 

  5. Liu, K., Cheng, Y., Gao, Y., Li, X., Qin, Y., & Wang, H. (2017). Super-resolution radar imaging based on experimental OAM beams. Applied Physics Letters, 2, 110. https://doi.org/10.1063/1.4981253

    Article  Google Scholar 

  6. Liu, K., Cheng, Y., Li, X., & Jiang, Y. (2018). Passive OAM-based radar imaging with single-in-multiple-out mode. IEEE Microwave and Wireless Components Letters, 28, 840–842. https://doi.org/10.1109/LMWC.2018.2852146

    Article  Google Scholar 

  7. Zheng, S., Chen, Y., Zhang, Z., Jin, X., Chi, H., Zhang, X., et al. (2018). Realization of beam steering based on plane spiral orbital angular momentum wave. IEEE Transactions on Antennas and Propagation, 66, 1352–1358. https://doi.org/10.1109/TAP.2017.2786297

    Article  Google Scholar 

  8. Chen, R., Xu, H., Moretti, M., & Li, J. (2018). Beam steering for the misalignment in UCA-Based OAM communication systems. IEEE Wireless Communications Letters, 7, 582–585. https://doi.org/10.1109/LWC.2018.2797931

    Article  Google Scholar 

  9. Song, Q., Wang, Y., Liu, K., Zhang, J., & Wang, Y. (2018). Beam steering for OAM beams using time-modulated circular arrays. Electronics Letters, 54, 1017–1018. https://doi.org/10.1049/el.2018.5386

    Article  Google Scholar 

  10. Mahmouli, F. E., & Walker, S. (2012). Orbital angular momentum generation in a 60-GHz wireless radio channel. In 20th telecommunications forum TELFOR, Serbia, Belgrade: IEEE (pp. 315–318).

  11. Beniss, A., Niemiec, R., Brousseau, C., Mahdjoubi, K., Emile, O., Bennis, A., et al. (2013). Flat plate for OAM generation in the millimeter band. In EuCAP2013-European conference on antennas and propagation, Gothenburg, Sweden (p. 1).

  12. Tamburini, F., Mari, E., Sponselli, A., Thidé, B., Bianchini, A., & Romanato, F. (2012). Encoding many channels on the same frequency through radio vorticity: First experimental test. New Journal of Physics, 2, 14. https://doi.org/10.1088/1367-2630/14/3/033001

    Article  Google Scholar 

  13. Zheng, S., Hui, X., Jin, X., Chi, H., & Zhang, X. (2015). Transmission characteristics of a twisted radio wave based on circular traveling-wave antenna. IEEE Transactions on Antennas and Propagation, 63, 1530–1536. https://doi.org/10.1109/TAP.2015.2393885

    Article  MathSciNet  MATH  Google Scholar 

  14. Thidé, B., Then, H., Sjöholm, J., Palmer, K., Bergman, J., Carozzi, T. D., et al. (2007). Utilization of photon orbital angular momentum in the low-frequency radio domain. Physical Review Letters, 2, 99. https://doi.org/10.1103/PhysRevLett.99.087701

    Article  Google Scholar 

  15. Tennant, A., & Allen, B. (2012). Generation of OAM radio waves using circular time-switched array antenna. Electronics Letters, 48, 1365–1366. https://doi.org/10.1049/el.2012.2664

    Article  Google Scholar 

  16. Al-Bassam, A., Salem, M. A., & Caloz, C. (2014). Vortex beam generation using circular leaky-wave antenna. In IEEE antennas and propagation society international symposium (APSURSI), IEEE (vol. 22, pp. 1792–1793). https://doi.org/10.1364/oe.22.014530.

  17. Lu, P., Voyer, D., Breard, A., Huillery, J., Allard, B., Lin-Shi, X., et al. (2018). Design of TE-polarized bessel antenna in microwave range using leaky-wave modes. IEEE Transactions on Antennas and Propagation, 66, 32–41. https://doi.org/10.1109/TAP.2017.2768584

    Article  Google Scholar 

  18. Liu, K., Cheng, Y., Li, X., Wang, H., Qin, Y., & Jiang, Y. (2016). Study on the theory and method of vortex-electromagnetic-wave-based radar imaging. IET Microwaves, Antennas and Propagation, 10, 961–968. https://doi.org/10.1049/iet-map.2015.0842

    Article  Google Scholar 

  19. Liu, K., Cheng, Y., Wang, H., Li, X., & Qin, Y. (2017). Radiation pattern synthesis for the generation of vortex electromagnetic wave. IET Microwaves, Antennas and Propagation, 11, 685–694. https://doi.org/10.1049/iet-map.2016.0681

    Article  Google Scholar 

  20. Alamayreh, A., Qasem, N., & Rahhal, J. S. (2020). General configuration MIMO system with arbitrary OAM. Electromagnetics, 40, 343–353. https://doi.org/10.1080/02726343.2020.1780378

    Article  Google Scholar 

  21. Gao, X., Huang, S., Wei, Y., Zhai, W., Xu, W., Yin, S., et al. (2014). An orbital angular momentum radio communication system optimized by intensity controlled masks effectively: Theoretical design and experimental verification. Applied Physics Letters. https://doi.org/10.1063/1.4904090

    Article  Google Scholar 

  22. Liu, K., Cheng, Y., Li, X., Qin, Y., Wang, H., & Jiang, Y. (2016). Generation of orbital angular momentum beams for electromagnetic vortex imaging. IEEE Antennas and Wireless Propagation Letters, 15, 1873–1876. https://doi.org/10.1109/LAWP.2016.2542187

    Article  Google Scholar 

  23. Alamayreh, A., & Qasem, N. (2021). Vortex beam generation in microwave band. Progress In Electromagnetics Research C, 107, 49–63. https://doi.org/10.2528/PIERC20082006

    Article  Google Scholar 

  24. Salem, N. P. M. H., Niver, E., & Salem, M. A. (2018). Microwave vortex beam launcher design. IET Microwaves, Antennas and Propagation, 12, 2149–2153. https://doi.org/10.1049/iet-map.2018.5007

    Article  Google Scholar 

  25. Mao, F., Li, T., Shao, Y., Yang, J., & Huang, M. (2016). Orbital angular momentum radiation from circular patches. Progress In Electromagnetics Research Letters, 61, 13–18.

    Article  Google Scholar 

  26. Hui, X., Zheng, S., Chen, Y., Hu, Y., Jin, X., Chi, H., et al. (2015). Multiplexed millimeter wave communication with dual orbital angular momentum (OAM) mode antennas. Scientific Reports. https://doi.org/10.1038/srep10148

    Article  Google Scholar 

  27. Berglind, E., & Bjork, G. (2014). Humblet’s decomposition of the electromagnetic angular moment in metallic waveguides. IEEE Transactions on Microwave Theory and Techniques, 62, 779–788. https://doi.org/10.1109/TMTT.2014.2308891

    Article  Google Scholar 

  28. Cheng, W., Zhang, H., Liang, L., Jing, H., & Li, Z. (2017). Orbital-angular-momentum embedded massive MIMO: Achieving multiplicative spectrum-efficiency for mmwave communications. IEEE Access, 6, 2732–2745. https://doi.org/10.1109/ACCESS.2017.2785125

    Article  Google Scholar 

  29. Catarinucci, L., Guglielmi, S., Mainetti, L., Mighali, V., Patrono, L., Stefanizzi, M. L., et al. (2013). An energy-efficient MAC scheduler based on a switched-beam antenna for wireless sensor networks. Journal of Communications Software and Systems, 9, 117–127. https://doi.org/10.24138/jcomss.v9i2.149

    Article  Google Scholar 

  30. Wang, G., & Qin, Y. (2019). MAC protocols for wireless mesh networks with multi-beam antennas: A survey. Berlin: Springer. https://doi.org/10.1007/978-3-030-12388-8

    Book  Google Scholar 

  31. Li, X., Hu, F., Qi, J., & Kumar, S. (2019). Systematic medium access control in hierarchical airborne networks with multibeam and single-beam antennas. IEEE Transactions on Aerospace and Electronic Systems, 55, 706–717. https://doi.org/10.1109/TAES.2018.2864468

    Article  Google Scholar 

  32. Atmaca, S., Ceken, C., & Erturk, I. (2009). A new QoS-aware TDMA/FDD MAC protocol with multi-beam directional antennas. Computer Standards and Interfaces, 31, 816–829. https://doi.org/10.1016/j.csi.2008.09.035

    Article  Google Scholar 

  33. Dassault systemes. https://www.3ds.com/products-services/simulia/products/cst-studio-suite/2020

  34. Li, R. L., DeJean, G., Laskar, J., & Tentzeris, M. M. (2005). Investigation of circularly polarized loop antennas with a parasitic element for bandwidth enhancement. IEEE Transactions on Antennas and Propagation, 53, 3930–3939. https://doi.org/10.1109/TAP.2005.859917.

    Article  Google Scholar 

  35. Knudsen, H. (1953). The field radiated by a ring quasi-array of an infinite number of tangential or radial dipoles. Proceedings of the IRE, 41, 781–789. https://doi.org/10.1109/JRPROC.1953.274261

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nidal Qasem.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qasem, N., Alamayreh, A. & Rahhal, J. Beam steering using OAM waves generated by a concentric circular loop antenna array. Wireless Netw 27, 2431–2440 (2021). https://doi.org/10.1007/s11276-021-02589-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-021-02589-z

Keywords

Navigation