Skip to main content

Advertisement

Log in

Secrecy capacity in two-way energy harvesting relay networks with a friendly jammer

  • Original Paper
  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

This paper considers secure two-way relay communications in the presence of an eavesdropper. Two users without a direct link between them communicate via an energy harvesting two-way relay. A friendly jammer is employed to reduce information leakage to the eavesdropper. The relay relies on the signals received to harvest energy and forward signals to the users. The power splitting factor and transmit power at the users and jammer are jointly optimized using geometric programming to maximize the secrecy capacity of the system. The imperfect cancellation of the jamming signal is interpreted as noise at the users which decreases the secrecy capacity. Further, it is shown that the secrecy capacity with a jammer is greater than without a jammer. The effect of the relay, jammer, and eavesdropper locations on the performance is studied. It is shown that the secrecy capacity is greater when the relay is equidistant from the users. In addition, having the jammer closer to the eavesdropper results in a higher secrecy capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Varshney, L. R. (2008). Transporting information and energy simultaneously. In Proceedings of IEEE international symposium on information theory (pp. 1612–1616), Toronto, ON.

  2. Grover, P., & Sahai, A. (2010). Shannon meets Tesla: Wireless information and power transfer. In Proceedings of IEEE international symposium on information theory (pp. 2363–2367), Austin, TX.

  3. Hossain, M. A., Noor, R. M., Yau, K. A., Ahmedy, I., & Anjum, S. S. (2019). A survey on simultaneous wireless information and power transfer with cooperative relay and future challenges. IEEE Access, 7, 19166–19198.

    Article  Google Scholar 

  4. Liu, L., Zhang, R., & Chua, K.-C. (2013). Wireless information transfer with opportunistic energy harvesting. IEEE Transactions on Wireless Communications, 12(1), 288–300.

    Article  Google Scholar 

  5. Zhou, X., Zhang, R., & Ho, C. K. (2013). Wireless information and power transfer: Architecture design and rate-energy tradeoff. IEEE Transactions on Communications, 61(11), 4754–4767.

    Article  Google Scholar 

  6. Nasir, A. A., Zhou, X., Durrani, S., & Kennedy, R. A. (2013). Relaying protocols for wireless energy harvesting and information processing. IEEE Transactions on Wireless Communications, 12(7), 3622–3636.

    Article  Google Scholar 

  7. Ju, M., Kang, K., Hwang, K., & Jeong, C. (2015). Maximum transmission rate of PSR/TSR protocols in wireless energy harvesting DF-based relay networks. IEEE Journal on Selected Areas in Communications, 33(12), 2701–2717.

    Article  Google Scholar 

  8. Di, X., Xiong, K., Fan, P., & Yang, H. (2017). Simultaneous wireless information and power transfer in cooperative relay networks with rateless codes. IEEE Transactions on Vehicular Technology, 66(4), 2981–2996.

    Article  Google Scholar 

  9. Atapattu, S., & Evans, J. (2016). Optimal energy harvesting protocols for wireless relay networks. IEEE Transactions on Wireless Communications, 15(8), 5789–5803.

    Article  Google Scholar 

  10. Huang, S., Yao, Y., & Feng, Z. (2018). Simultaneous wireless information and power transfer for relay assisted energy harvesting network. Wireless Networks, 24(2), 453–462.

    Article  Google Scholar 

  11. Ye, Y., Li, Y., Wang, D., Zhou, F., Hu, R. Q., & Zhang, H. (2018). Optimal transmission schemes for DF relaying networks using SWIPT. IEEE Transactions on Vehicular Technology, 67(8), 7062–7072.

    Article  Google Scholar 

  12. Jiang, D., Zheng, H., Tang, D., & Tang, Y. (2015). Relay selection and power allocation for cognitive energy harvesting two-way relaying networks. In Proceedings of IEEE international conference on electronics information and emergency communication (pp. 163–166), Beijing, China.

  13. Zhou, L., & Chao, H.-C. (2011). Multimedia traffic security architecture for the internet of things. IEEE Network, 25(3), 35–40.

    Article  Google Scholar 

  14. Leung-Yan-Cheong, S. K., & Hellman, M. E. (1978). The Gaussian wire-tap channel. IEEE Transactions on Information Theory, 24(4), 451–456.

    Article  MathSciNet  Google Scholar 

  15. Delfs, H., & Knebl, H. (2007). Introduction to cryptography: Principles and applications (2nd ed.). Springer.

    Book  Google Scholar 

  16. Hong, Y.-P., Lan, P., & Kuo, C.-J. (2013). Enhancing physical-layer secrecy in multiantenna wireless systems: An overview of signal processing approaches. IEEE Signal Processing Magazine, 30(5), 29–40.

    Article  Google Scholar 

  17. Barros, J., & Rodrigues, M. R. D. (2006). Secrecy capacity of wireless channels. In Proceedings of IEEE international symposium on information theory (pp. 356–360), Seattle, WA.

  18. Wyner, A. D. (1975). The wire-tap channel. Bell System Technical Journal, 54(8), 1355–1387.

    Article  MathSciNet  Google Scholar 

  19. Oohama, Y. (2001). Coding for relay channels with confidential messages. In Proceedings of IEEE information theory workshop (pp. 87–89), Cairns, Australia.

  20. Son, P. N., & Kong, H. Y. (2015). Cooperative communication with energy harvesting relays under physical layer security. IET Communications, 9(17), 2131–2139.

    Article  Google Scholar 

  21. Salem, A., Hamdi, K. A., & Rabie, K. M. (2016). Physical layer security with RF energy harvesting in AF multi-antenna relaying networks. IEEE Transactions on Communications, 64(7), 3025–3038.

    Article  Google Scholar 

  22. Zhang, Y., Zhao, X., & Xie, Y. (2019). Secure communications in SWIPT-enabled two way relay networks. IEEE Access, 7, 111890–111896.

    Article  Google Scholar 

  23. Zhang, J., Tao, X., Wu, H., & Zhang, X. (2018). Secure transmission in SWIPT-powered two-way untrusted relay networks. IEEE Access, 6, 10508–10519.

    Article  Google Scholar 

  24. Jameel, F., Wyne, S., & Ding, Z. (2018). Secure communications in three-step two-way energy harvesting DF relaying. IEEE Communications Letters, 22(2), 308–311.

    Article  Google Scholar 

  25. Jameel, F., Khan, F., Haider, M. A. A., & Haq, A. U. (2017). On physical layer security of two way energy harvesting relays. In Proceedings of international conference on frontiers of information technology (pp. 35–40), Islamabad, Pakistan.

  26. Thakur, C. & Chattopadhyay, S. (2020). Secrecy performance of an improved interference-aided RF energy harvesting scheme in two-way multi-antenna relay network. In Proceedings of IEEE applied signal processing conference (pp. 123–127), Kolkata, India.

  27. Rodriguez, L. J., Tran, N. H., Duong, T. Q., Le-Ngoc, T., Elkashlan, M., & Shetty, S. (2015). Physical layer security in wireless cooperative relay networks: State of the art and beyond. IEEE Communications Magazine, 53(12), 32–39.

    Article  Google Scholar 

  28. Wang, L., Cai, Y., Zou, Y., Yang, W., & Hanzo, L. (2016). Joint relay and jammer selection improves the physical layer security in the face of CSI feedback delays. IEEE Transactions on Vehicular Technology, 65(8), 6259–6274.

    Article  Google Scholar 

  29. Rajaram, A., Jayakody, D. N. K., Dinis, R., & Beko, M. (2021). Energy efficient secure communication model against cooperative eavesdropper. Applied Sciences, 11(4), 1563.

    Article  Google Scholar 

  30. Mamaghani, M. T., Kuhestani, A., & Wong, K.-K. (2018). Secure two-way transmission via wireless-powered untrusted relay and external jammer. IEEE Transactions on Vehicular Technology, 67(9), 8451–8465.

    Article  Google Scholar 

  31. Liu, M., & Liu, Y. (2017). Power allocation for secure SWIPT systems with wireless-powered cooperative jamming. IEEE Communications Letters, 21(6), 1353–1356.

    Article  Google Scholar 

  32. Wang, Y., Zhang, T., Yang, W., Yin, H., Shen, Y., & Zhu, H. (2020). Secure communication via multiple RF-EH untrusted relays with finite energy storage. IEEE Internet of Things Journal, 7(2), 1476–1487.

    Article  Google Scholar 

  33. Wang, K., Yuan, L., Miyazaki, T., Zeng, D., Guo, S., & Sun, Y. (2017). Strategic antieavesdropping game for physical layer security in wireless cooperative networks. IEEE Transactions on Vehicular Technology, 66(10), 9448–9457.

    Article  Google Scholar 

  34. Zhang, R., Song, L., Han, Z., & Jiao, B. (2012). Physical layer security for two-way untrusted relaying with friendly jammers. IEEE Transactions on Vehicular Technology, 61(8), 3693–3704.

    Article  Google Scholar 

  35. Jiang, X., Li, P., Li, B., Zou, Y., & Wang, R. (2021). Security-reliability tradeoff for friendly jammer aided multiuser scheduling in energy harvesting communications. Security and Communication Networks, 2021, 5599334.

    Google Scholar 

  36. Cao, K., Wang, B., Ding, H., & Tian, J. (2019). Adaptive cooperative jamming for secure communication in energy harvesting relay networks. IEEE Wireless Communications Letters, 8(5), 1316–1319.

    Article  Google Scholar 

  37. Lee, K., Hong, J., Choi, H., & Quek, T. Q. S. (2019). Wireless-powered two-way relaying protocols for optimizing physical layer security. IEEE Transactions on Information Forensics and Security, 14(1), 162–174.

    Article  Google Scholar 

  38. Ha, D.-H., Nguyen, T. N., Tran, M. H. Q., Li, X., Tran, P. T., & Voznak, M. (2020). Security and reliability analysis of a two-way half-duplex wireless relaying network using partial relay selection and hybrid TPSR energy harvesting at relay nodes. IEEE Access, 8, 187165–187181.

    Article  Google Scholar 

  39. Xu, J., Liu, L., & Zhang, R. (2014). Multiuser MISO beamforming for simultaneous wireless information and power transfer. IEEE Transactions on Signal Processing, 62(18), 4798–4810.

    Article  MathSciNet  Google Scholar 

  40. Zhang, G., Xu, J., Wu, Q., Cui, M., Li, X., & Lin, F. (2018). Wireless powered cooperative jamming for secure OFDM system. IEEE Transactions on Vehicular Technology, 67(2), 1331–1346.

    Article  Google Scholar 

  41. Long, H., Xiang, W., & Li, Y. (2017). Precoding and cooperative jamming in multi-antenna two-way relaying wiretap systems without eavesdroppers' channel state information. IEEE Transactions on Information Forensics and Security, 12(6), 1309–1318.

    Article  Google Scholar 

  42. Chen, J., Zhang, R., Song, L., Han, Z., & Jiao, B. (2012). Joint relay and jammer selection for secure two-way relay networks. IEEE Transactions on Information Forensics and Security, 7(1), 310–320.

    Article  Google Scholar 

  43. Wang, D., Bai, B., Zhao, W., & Han, Z. (2019). A survey of optimization approaches for wireless physical layer security. IEEE Communications Surveys & Tutorials, 21(2), 1878–1911.

    Article  Google Scholar 

  44. Boyd, S., Kim, S.-J., Vandenberghe, L., & Hassibi, A. (2007). A tutorial on geometric programming. Optimization Engineering, 8(1), 67–127.

    Article  MathSciNet  Google Scholar 

  45. Hayajneh, M., & Gulliver, T. A. (2019). Wireless information and power transfer with optimal transmit antenna selection. IET Communications, 13(19), 3217–3221.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maymoona Hayajneh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hayajneh, M., Gulliver, T.A. Secrecy capacity in two-way energy harvesting relay networks with a friendly jammer. Wireless Netw 27, 4551–4566 (2021). https://doi.org/10.1007/s11276-021-02699-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-021-02699-8

Keywords

Navigation