Skip to main content
Log in

Location algorithm of fuzzy outliers in big data networks

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

The traditional Hadoop-based anomaly data recognition algorithm for big data networks does not suppress the disturbance components of the data attributes of anomalous nodes. A new algorithm for locating and identifying fuzzy anomaly data in big data network is proposed. In the big data network environment, adaptive cascade notch filter is used to eliminate data interference, and second-order lattice filter is used to locate abnormal node data. The parameters of the fuzzy linear regression model are estimated, and the fuzzy Cook distance is solved. The data points with the largest fuzzy Cook distance are regarded as fuzzy abnormal data, and the data location and recognition are realized. The experimental results show that the average recall rate of the proposed algorithm for locating fuzzy outlier data is 93%, and the locating probability of the proposed algorithm for fuzzy outlier data is 92% when the signal-to-noise ratio is −30 dB. The proposed algorithm can accurately identify the fuzzy outlier data in big data network by Cook distance, and has better locating and identifying effect for fuzzy outlier data in big data network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data and material

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Cao, B., Zhao, J., Gu, Y., Fan, S., & Yang, P. (2020). Security-aware industrial wireless sensor network deployment optimization. IEEE Transactions on Industrial Informatics, 16(8), 5309–5316.

    Article  Google Scholar 

  2. Chao, M., Kai, C., & Zhiwei, Z. (2020). Research on tobacco foreign body detection device based on machine vision. Transactions of the Institute of Measurement and Control, 42, 2857.

    Article  Google Scholar 

  3. Cao, B., Zhao, J., Lv, Z., Gu, Y., Yang, P., & Halgamuge, S. K. (2020). Multiobjective evolution of fuzzy rough neural network via distributed parallelism for stock prediction. IEEE Transactions on Fuzzy Systems, 28(5), 939–952.

    Article  Google Scholar 

  4. Fu, X., Fortino, G., Pace, P., Aloi, G., & Li, W. (2020). Environment-fusion multipath routing protocol for wireless sensor networks. Information Fusion, 53, 4–19.

    Article  Google Scholar 

  5. Zuo, C., Chen, Q., Tian, L., Waller, L., & Asundi, A. (2015). Transport of intensity phase retrieval and computational imaging for partially coherent fields: The phase space perspective. Optics and Lasers in Engineerings, 71, 20–32.

    Article  Google Scholar 

  6. Fu, X., & Yang, Y. (2020). Modeling and analysis of cascading node-link failures in multi-sink wireless sensor networks. Reliability Engineering & System Safety, 197, 106815.

    Article  Google Scholar 

  7. Lv, Z., Li, X., Lv, H., & Xiu, W. (2020). BIM big data storage in WebVRGIS. IEEE Transactions on Industrial Informatics, 16(4), 2566–2573.

    Article  Google Scholar 

  8. Chen, Y. (2017). Simulation research on anomaly detection in big data environment. Computer Simulation, 34(9), 366–369.

    Google Scholar 

  9. Xu, G., Wang, Z., Zang, D. W., et al. (2018). Anomaly detection algorithm of data center network based on LSDB. Computer Research and Development, 55(4), 815–830.

    Google Scholar 

  10. Lai, K., & Wang, X. (2015). Research on improved anomaly detection and localization algorithm in wireless sensor networks. Computer Science, 42(4), 89–93.

    Google Scholar 

  11. Lv, Z., & Qiao, L. (2020). Analysis of healthcare big data. Future Generation Computer Systems, 109, 103–110.

    Article  Google Scholar 

  12. Lv, Z., & Song, H. (2020). Mobile internet of things under data physical fusion technology. IEEE Internet Things, 7(5), 4616–4624.

    Article  Google Scholar 

  13. Shi, K., Wang, J., Zhong, S., Tang, Y., & Cheng, J. (2020). Hybrid-driven finite-time H∞ sampling synchronization control for coupling memory complex networks with stochastic cyber attacks. Neurocomputing (Amsterdam), 387, 241–254.

    Article  Google Scholar 

  14. Zhao, C., & Li, J. (2020). Equilibrium selection under the bayes-based strategy updating rules. Symmetry, 12(5), 739.

    Article  Google Scholar 

  15. Arencibia-Jorge, R., García-García, L., Galban-Rodriguez, E., & Carrillo-Calvet, H. (2020). The multidisciplinary nature of COVID-19 research. Iberoamerican Journal of Science Measurement and Communication, 1(1), 003.

    Article  Google Scholar 

  16. Ben Taher, R., Naassi, N., & Rachidi, M. (2017). On the leslie matrices, fibonacci sequences and population dynamics. Journal of Discrete Mathematical Sciences and Cryptography, 20(2), 565–594.

    Article  MathSciNet  Google Scholar 

  17. Fu, H., Liu, Z., Wang, M., & Wang, Z. (2018). Big data digging of the public’s cognition about recycled water reuse based on the bp neural network. Complexity, 1, 1–1.

    Google Scholar 

  18. Gao, W., & Wang, W. (2017). A tight neighborhood union condition on fractional (g, f, n ’, m)-critical deleted graphs. Colloquium Mathematicum, 149(2), 291–298.

    Article  MathSciNet  Google Scholar 

  19. Jiang, S. C., Ge, S. B., Wu, X., Yang, Y. M., Chen, J. T., & Peng, W. X. (2017). Treating n-butane by activated carbon and metal oxides. Toxicological and Environmental Chemistry, 99(5–6), 753–759.

    Article  Google Scholar 

  20. Pongnu, N., & Pochai, N. (2017). Numerical simulation of groundwater measurement using alternating direction methods. Journal of Interdisciplinary Mathematics, 20(2), 513–541.

    Article  Google Scholar 

  21. Le, H. S. (2015). A novel kernel fuzzy clustering algorithm for geo-demographic analysis. Information Sciences, 317(10), 202–223.

    Google Scholar 

  22. Keskin, G. A. (2015). Using integrated fuzzy DEMATEL and fuzzy C: Means algorithm for supplier evaluation and selection. International Journal of Production Research, 53(12), 3586–3602.

    Article  Google Scholar 

  23. Waples, R. S. (2015). Testing for hardy-weinberg proportions: Have we lost the plot? Journal of Heredity, 106(1), 1–19.

    Article  Google Scholar 

  24. Saltos, R., & Weber, R. (2016). A rough–fuzzy approach for support vector clustering. Information Sciences, 339, 353–368.

    Article  Google Scholar 

  25. Qin, J., Fu, W., Gao, H., et al. (2017). Distributed k-means algorithm and fuzzy c-means algorithm for sensor networks based on multiagent consensus theory. IEEE Transactions on Cybernetics, 47(3), 772–783.

    Article  Google Scholar 

  26. Li, F., & Qin, J. (2017). Robust fuzzy local information and $L_p$Lp-norm distance-based image segmentation method. IET Image Processing, 11(4), 217–226.

    Article  Google Scholar 

  27. Logambigai, R., & Kannan, A. (2016). Fuzzy logic based unequal clustering for wireless sensor networks. Wireless Networks, 22(3), 1–13.

    Article  Google Scholar 

  28. Jin, R., Che, Z., Xu, H., et al. (2015). An RSSI-based localization algorithm for outliers suppression in wireless sensor networks. Wireless Networks, 21(8), 1–9.

    Article  Google Scholar 

  29. Jiang, F., & Chen, Y. M. (2015). Outlier detection based on granular computing and rough set theory. Applied Intelligence, 42(2), 303–322.

    Article  Google Scholar 

  30. Sinova, B., Gil, M. Á., & Aelst, S. V. (2016). M-estimates of location for the robust central tendency of fuzzy data. IEEE Transactions on Fuzzy Systems, 24(4), 945–956.

    Article  Google Scholar 

  31. Sarimveis, H., Alexandridis, A., Tsekouras, G., & Bafas, G. (2002). A fast and efficient algorithm for training radial basis function neural networks based on a fuzzy partition of the input space. Industrial & engineering chemistry research, 41(4), 751–759.

    Article  Google Scholar 

  32. Chen, S. N., Qian, H. Y., & Li, W. (2016). Anomaly detection algorithm for multi-level high dimensional data based on angle variance. Automation and Instrumentation, 33(11), 3383–3386.

    Google Scholar 

  33. Yu, Y., Guo, L., Deng, K., et al. (2017). Design and research of big data analysis in electric power acquisition data analysis and intelligent monitoring system. Automation and Instrumentation, 5, 162–163.

    Google Scholar 

  34. Zhang, W., Ao, N. X., Wang, D. Y., et al. (2015). An early warning method of social security risk based on abnormal electric behavior identification. Journal of China Academy of Electronics and Information Technology, 11(6), 594–598.

    Google Scholar 

  35. Rong, D. S., Hu, J. S., Zhao, J. J., et al. (2018). Prediction model of methane production from low rank coal based on data fusion. Journal of Power Supply, 16(1), 178–184.

    Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rentai Chen.

Ethics declarations

Conflict of interest

No conflict of interest exits in the submission of this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, R. Location algorithm of fuzzy outliers in big data networks. Wireless Netw 28, 2785–2793 (2022). https://doi.org/10.1007/s11276-021-02706-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-021-02706-y

Keywords

Navigation