Skip to main content
Log in

Delay-aware application offloading in fog environment using multi-class Brownian model

  • Original Paper
  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

In the era of technology, compact and low-powered IoT devices have become an integral part of the daily routines of various sectors such as healthcare, education, industries, defense, and agriculture, etc. The IoT has increased the flow of enormous data from one network to another and extended the dependability of the public networks. In health applications, this dependency can cause excessive packets to be lost and prolonged waiting, which can cause sensitive applications to suffer. The authors suggested fog computing as a potential middle layer in the delay-aware computational system in existing works. There are many issues with the cloud-based computation model, such as location awareness, long-distance communication path, and unmanageable network bandwidth. These parameters can be solved using a fog computing model, which helps achieve ultra-low latency and minimum service delivery time. However, task offloading and scheduling are significant open research issues concerning resource management and allocation in a cloud-fog system. This paper presents a delay-aware application offloading focusing on reducing the response time and maximizing the system performance. Our proposed model developed a multiclass open queueing model that maintains the traffic on different queues, aiming to achieve maximum system performance. The simulation results demonstrate that our proposed model DAAO (Delay-aware application offloading) yields a performance improvement of 14.30% service rate and minimized failure rate by 2.0%. The simulation results supported the robustness of the proposed model in terms of minimum response time and maximum success rate. Our proposed model achieves a better tradeoff than existing work in terms of offloading and minimum failure rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Noura, M., Atiquzzaman, M., & Gaedke, M. (2019). Interoperability in internet of things: taxonomies and open challenges. Mobile Networks and Applications, 24, 796–809.

    Article  Google Scholar 

  2. Gedeon, J., Brandherm, F., Egert, R., Grube, T., & Muhlhauser, M. (2019). What the Fog? edge computing revisited: promises, applications and future challenges. IEEE Access, 7, 152847–152878.

    Article  Google Scholar 

  3. Sun, Y., Wei, T., Li, H., Zhang, Y., & Wu, W. (2020). Energy-efficient multimedia task assignment and computing offloading for mobile edge computing networks. IEEE Access, 8, 36702–36713.

    Article  Google Scholar 

  4. Sufyan, F., & Banerjee, A. (2020). Computation offloading for distributed mobile edge computing network: a multiobjective approach. IEEE Access, 8, 149915–149930.

    Article  Google Scholar 

  5. Hazra, A., Adhikari, M., Amgoth, T., & Srirama, S. N. (2020). Joint computation offloading and scheduling optimization of iot applications in fog networks. IEEE Transactions on Network Science and Engineering, 7, 3266–3278.

    Article  MathSciNet  Google Scholar 

  6. Guo, M., Guan, Q., & Ke, W. (2018). Optimal scheduling of VMs in queueing cloud computing systems with a heterogeneous workload. IEEE Access, 6, 15178–15191.

    Article  Google Scholar 

  7. Abedin, S. F., Alam, M. G. R., Kazmi, S. M. A., Tran, N. H., Niyato, D., & Hong, C. S. (2019). Resource allocation for ultra-reliable and enhanced mobile broadband iot applications in fog network. IEEE Transactions on Communications, 67, 489–502.

    Article  Google Scholar 

  8. Lie, L., Guan, Q., Jin, L., & Guo, M. (2019). Resource Allocation and Task Offloading for Heterogeneous Real-Time Tasks With Uncertain Duration Time in a Fog Queueing System. IEEE Access, 7, 9912–9925.

    Article  Google Scholar 

  9. Fan, Q., & Ansari, N. (2018). Workload Allocation in Hierarchical Cloudlet Networks. IEEE Communications Letters, 22(4), 820–823.

    Article  Google Scholar 

  10. Kavitha, V., & Sinha, R.K. (2018). Queuing with Heterogeneous Users: Block Probability and Sojourn times, arXiv: 1709.06593v3.

  11. Yi, C., Cai, J., & Su, Z. (2020). A Multi-User Mobile Computation Offloading and Transmission Scheduling Mechanism for Delay-Sensitive Applications. IEEE Trans. on Mob. Compu., 19(1), 29–43.

    Article  Google Scholar 

  12. Ommeren, J.-K.V., Baer, N., Mishra, N., & Roy, B. (2020). Batch service systems with heterogeneous servers. Queueing Systems, 95, 251–269.

    Article  MathSciNet  Google Scholar 

  13. Misra, C., & Swain, P. K. (2010). performance analysis of finite buffer queueing system with multiple heterogeneous servers. In T. Janowski & H. Mohanty (Eds.), Distributed Computing and Internet Technology. ICDCIT (2010). Lecture Notes in Computer Science (Vol. 5966, pp. 180–183). Berlin, Heidelberg: Springer.

    Chapter  Google Scholar 

  14. Kafhali, S. E., & Salah, K. (2019). Performance Modeling and Analysis of IoT-enabled Healthcare Monitoring Systems. IET Networks, 8(1), 48–58.

    Article  Google Scholar 

  15. Bertsimas, D., Paschalidis, ICh., & Tsitsiklis, J. N. (1994). Optimization of multiclass queueing networks: Polyhedral and nonlinear characterizations of achievable performance. The Annals of Applied Probability, 4, 43–75.

    Article  MathSciNet  Google Scholar 

  16. Ross, S. M. (2019). Chapter 8 - Queueing Theory, Introduction to Probability Models (Twelfth, pp. 507–589). Cambridge: Academic Press.

    Book  Google Scholar 

  17. Filipowicz, B., & Kwiecien, J. (2008). Queueing systems and networks. Models and applications. Bulletin of the Polish Academy of Sciences: Technical Sciences, 56(4), 379–390.

    Google Scholar 

  18. Liang, H., Xing, T., Cai, L., Huang, D., Peng, D., & Liu, Y. (2013). Adaptive computing resource allocation for mobile cloud computing. International Journal of Distributed Sensor Networks, 9(4), 1–14.

    Article  Google Scholar 

  19. Tawalbeh, L., Jararweh, Y., Ababneh, F., & Dosari, F. (2015). Large scale cloudlets deployment for efficient mobile cloud computing. Journal of Networks, 10(1), 70–76.

    Article  Google Scholar 

  20. Mao, Y., Zhang, J., & Letaief, K. B. (2016). Dynamic computation offloading for mobile-edge computing with energy harvesting devices. IEEE Journal on Selected Areas in Communications, 34(12), 3590–3605.

    Article  Google Scholar 

  21. Samanta, A., Chang, Z, & Han, Z. (2018). Latency-Oblivious Distributed Task Scheduling for Mobile Edge Computing, IEEE Global Comm. Conf. (GLOBECOM), 1-7, Abu Dhabi, United Arab Emirates.

  22. Samanta, A., & Tang, J. (2020). Dyme: dynamic microservice scheduling in edge computing enabled IoT. IEEE Internet of Things Journal, 7(7), 6164–6174.

    Article  Google Scholar 

  23. Mukherjee, A., De, D., & Roy, D. G. (2019). Power and latency aware cloudlet selection strategy for multi-cloudlet environment. IEEE Transactions on Cloud Computing, 7(1), 141–154.

    Article  Google Scholar 

  24. Gill, S. S., Garraghan, P., & Buyya, R. (2019). ROUTER: Fog enabled cloud based intelligent resource management approach for smart home IoT devices. The Journal of Systems and Software, 154, 125–138.

    Article  Google Scholar 

  25. Merluzzi, M., Lorenzo, P. D., & Barbarossa, S. (2021). Wireless edge machine learning: Resource allocation and trade-offs. IEEE Access, 9, 45377–45398.

    Article  Google Scholar 

  26. Abedin, S. F., Bairagi, A. K., Munir, M. S., Tran, N. H., & Hong, C. S. (2019). Fog load balancing for massive machine type communications: A game and transport theoretic approach. IEEE Access, 7, 4204–4218.

    Article  Google Scholar 

  27. Sthapit, S., Thompson, J., Robertson, N. M., & Hopgood, J. R. (2019). Computational load balancing on the edge in absence of cloud and fog. IEEE Transactions on Mobile Computing, 18, 1499–1512.

    Article  Google Scholar 

  28. Moody, G. B., & Mark, R. G. (1996). A database to support development and evaluation of intelligent intensive care monitoring. Computers in Cardiology, 23, 657–660.

    Google Scholar 

  29. Bhogal, Amar S., & Mani, Ali R. (2017). Pattern analysis of oxygen saturation variability in healthy individuals: entropy of pulse oximetry signals carries information about mean oxygen saturation. Frontiers in Physiology, 8, 555.

    Article  Google Scholar 

  30. Silva, M., Freitas, D., Neto, E., Lins, C., Teichrieb, V., & Teixeira, J. M. (2014). Glassist: Using Augmented Reality on Google Glass as an Aid to Classroom Management. In XVI Sym. on Virtual and Augmented Reality, (pp. 37-44)

  31. Sonmez, C., Ozgovde, A., & Ersoy, C. (2019). Fuzzy Workload Orchestration for Edge Computing. IEEE Transactions on Network and Service Management, 16, 769–782.

    Article  Google Scholar 

  32. Halabian, H., Lambadaris, I., & Viniotis, Y. (2019). Optimal server assignment in multi-server queueing systems with random connectivities. Journal of Communications and Networks, 21, 405–415.

    Article  Google Scholar 

  33. Inaty, E., & Raad, R. (2008). CDMA-based dynamic power and bandwidth allocation (DPBA) scheme for multiclass EPON: A weighted fair queuing approach. IEEE/OSA Journal of Optical Communications and Networking, 10, 52–64.

    Article  Google Scholar 

  34. Sonmez, C., Ozgovde, A., & Ersoy, C. (2017). EdgeCloudSim: An environment for performance evaluation of Edge Computing systems. In 2017 II Int. Conf. on Fog and Mobile Edge Computing (FMEC), (pp. 39-44), Valencia.

  35. Sonmez, C., Ozgovde, A., & Ersoy, C. (2018). EdgeCloudSim: An environment for performance evaluation of Edge Computing systems. Transactions on Emerging Telecommunications Technologies, 29(11), 1–17.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naveen Chauhan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chauhan, N., Banka, H. & Agrawal, R. Delay-aware application offloading in fog environment using multi-class Brownian model. Wireless Netw 27, 4479–4495 (2021). https://doi.org/10.1007/s11276-021-02724-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-021-02724-w

Keywords