Skip to main content
Log in

A hyperbolic routing scheme for information-centric internet of things with edge computing

  • Original Paper
  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Internet of Things (IoT) provides the opportunity to access devices at any time by connecting hundreds of billions of devices. However, routing among the massive number of devices can be a huge challenge. The increasing network size and dynamics of IoT introduce unmanageable routing overhead caused by the maintaining and query of the routing table. As a future network architecture, Information-Centric Networking (ICN) is raised as a promising networking model for IoT. Thus, in this paper, we leverage the ICN and edge computing paradigm to design a routing scheme for IoT. First, we design a hybrid addressing scheme to assign virtual coordinates. The hybrid addressing not only provides a high routing success ratio but also has low address description complexity (i.e., has a short address). Then, we propose a hyperbolic edge routing scheme based on the virtual coordinate. We evaluate our proposal via an extensive simulation. Simulation results show that the proposed routing scheme has a low path stretch and high routing success ratio. Compared with the existing routing schemes, our proposal can reduce the delay and hop count, while achieving a high cache hit ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., & Ayyash, M. (2015). Internet of things: a survey on enabling technologies, protocols, and applications. IEEE Communication Surveys and Tutorials., 17, 2347–2376. https://doi.org/10.1109/COMST.2015.2444095

    Article  Google Scholar 

  2. Liu, D., Cao, Z., Hou, M., Rong, H., & Jiang, H. (2020). Pushing the limits of transmission concurrency for low power wireless networks. ACM Transactions on Sensor Networks, 16, 1–29. https://doi.org/10.1145/3406834

    Article  Google Scholar 

  3. Cisco: Cisco Annual Internet Report (2018–2023) White Paper, https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html, last accessed 2020/07/09.

  4. Arshad, S., Azam, M. A., Rehmani, M. H., & Loo, J. (2019). Recent Advances in information-centric networking-based internet of things (ICN-IoT). IEEE Internet of Things Journal, 6, 2128–2158. https://doi.org/10.1109/JIOT.2018.2873343

    Article  Google Scholar 

  5. Xylomenos, G., Ververidis, C. N., Siris, V. A., Fotiou, N., Tsilopoulos, C., Vasilakos, X., Katsaros, K. V., & Polyzos, G. C. (2014). A survey of information-centric networking research. IEEE Communcations Surveys and Tutorials, 16, 1024–1049. https://doi.org/10.1109/SURV.2013.070813.00063

    Article  Google Scholar 

  6. Xiao, Z., Dai, X., Jiang, H., Wang, D., Chen, H., Yang, L., & Zeng, F. (2020). Vehicular task offloading via heat-aware mec cooperation using game-theoretic method. IEEE Internet of Things Journal, 7, 2038–2052. https://doi.org/10.1109/JIOT.2019.2960631

    Article  Google Scholar 

  7. Boguñá, M., Papadopoulos, F., & Krioukov, D. (2010). Sustaining the Internet with hyperbolic mapping. Nature Communications, 1, 62. https://doi.org/10.1038/ncomms1063

    Article  Google Scholar 

  8. Lehman, V., Gawande, A., Zhang, B., Zhang, L., Aldecoa, R., Krioukov, D., Wang, L.: An experimental investigation of hyperbolic routing with a smart forwarding plane in NDN. In: 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS). pp. 1–10. IEEE, Beijing, China (2016). https://doi.org/10.1109/IWQoS.2016.7590394.

  9. Voitalov, I., Aldecoa, R., Wang, L., & Krioukov, D. (2017). Geohyperbolic routing and addressing schemes. SIGCOMM Computer Communication Review, 47, 11–18. https://doi.org/10.1145/3138808.3138811

    Article  Google Scholar 

  10. Li, J., Zeng, F., Xiao, Z., Jiang, H., Zheng, Z., Liu, W., & Ren, J. (2020). Drive2friends: Inferring social relationships from individual vehicle mobility data. IEEE Internet of Things Journal, 7, 5116–5127. https://doi.org/10.1109/JIOT.2020.2974669

    Article  Google Scholar 

  11. Papadopoulos, F., Psomas, C., & Krioukov, D. (2015). Network mapping by replaying hyperbolic growth. IEEE/ACM Transactions on Networking, 23, 198–211. https://doi.org/10.1109/TNET.2013.2294052

    Article  Google Scholar 

  12. Papadopoulos, F., Aldecoa, R., & Krioukov, D. (2015). Network geometry inference using common neighbors. Physical Review E, 92, 022807. https://doi.org/10.1103/PhysRevE.92.022807

    Article  Google Scholar 

  13. Blasius, T., Friedrich, T., Krohmer, A., & Laue, S. (2018). Efficient embedding of scale-free graphs in the hyperbolic plane. IEEE/ACM Transactions on Networking, 26, 920–933. https://doi.org/10.1109/TNET.2018.2810186

    Article  MATH  Google Scholar 

  14. Li, X., Li, D., Wan, J., Liu, C., & Imran, M. (2018). Adaptive Transmission optimization in SDN-based industrial internet of things with edge computing. IEEE Internet of Things Journal, 5, 1351–1360. https://doi.org/10.1109/JIOT.2018.2797187

    Article  Google Scholar 

  15. Huy, T., Prasad, C., Dmitrii, C., Shizeng, Y., Qing, L., Fan, G., & Kannappan, P. (2018). Energy-aware mobile edge computing and routing for low-latency visual data processing. IEEE Transactions on Multimedia., 20, 2562–2577.

    Article  Google Scholar 

  16. Poularakis, K., Llorca, J., Tulino, A. M., Taylor, I., & Tassiulas, L. (2020). Service placement and request routing in mec networks with storage, computation, and communication constraints. IEEE/ACM Transactions on Networking, 28, 1047–1060. https://doi.org/10.1109/TNET.2020.2980175

    Article  Google Scholar 

  17. Xu, X., Xue, Y., Qi, L., Yuan, Y., Zhang, X., Umer, T., & Wan, S. (2019). An edge computing-enabled computation offloading method with privacy preservation for internet of connected vehicles. Future Generation Computer Systems., 96, 89–100. https://doi.org/10.1016/j.future.2019.01.012

    Article  Google Scholar 

  18. Li, X., Zhou, Z., Guo, J., Wang, S., & Zhang, J. (2019). Aggregated multi-attribute query processing in edge computing for industrial IoT applications. Computer Networks, 151, 114–123. https://doi.org/10.1016/j.comnet.2019.01.022

    Article  Google Scholar 

  19. Zhou, Z., Wu, Q., & Chen, X. (2019). Online orchestration of cross-edge service function chaining for cost-efficient edge computing. IEEE Journal on Selected Areas in Communications, 37, 1866–1880. https://doi.org/10.1109/JSAC.2019.2927070

    Article  Google Scholar 

  20. Kaur, K., Garg, S., Aujla, G. S., & Kumar, N. (2018). Edge computing in the industrial internet of things environment: Software-defined-networks-based edge-cloud interplay. IEEE Communications Magazine, 56(2), 44–51.

    Article  Google Scholar 

  21. Liang Wang, Waltari, O., Kangasharju, J.: MobiCCN: Mobility support with greedy routing in Content-Centric Networks. In: 2013 IEEE Global Communications Conference (GLOBECOM). pp. 2069–2075. IEEE, Atlanta, GA (2013). https://doi.org/10.1109/GLOCOM.2013.6831380.

  22. Cvetkovski, A., Crovella, M.: Low-stretch greedy embedding heuristics. In: 2012 Proceedings IEEE INFOCOM Workshops. pp. 232–237. IEEE, Orlando, FL, USA (2012). https://doi.org/10.1109/INFCOMW.2012.6193497.

  23. Grassi, G., Pesavento, D., Pau, G., Zhang, L., Fdida, S.: Navigo: Interest forwarding by geolocations in vehicular Named Data Networking. In: 2015 IEEE 16th International Symposium on A World of Wireless, Mobile and Multimedia Networks (WoWMoM) (2015).

  24. Azgin, A., Ravindran, R., Wang, G.: On-demand mobility support with anchor chains in information centric networks. In: 2017 IEEE International Conference on Communications (ICC). pp. 1–7. IEEE, Paris, France (2017). https://doi.org/10.1109/ICC.2017.7997210.

  25. Rao, A., Ratnasamy, S., Papadimitriou, C., Shenker, S., Stoica, I.: Geographic Routing without Location Information. 13.

  26. Kleinberg, R.: Geographic Routing Using Hyperbolic Space. In: IEEE INFOCOM 2007 - 26th IEEE International Conference on Computer Communications. pp. 1902–1909. IEEE, Anchorage, AK, USA (2007). https://doi.org/10.1109/INFCOM.2007.221.

  27. Yang, W., Qin, Y., Yi, Z., Yang, Y.: Content-Based Hyperbolic Routing and Push Mechanism in Named Data Networking. In: ICC 2019 - 2019 IEEE International Conference on Communications (ICC). pp. 1–6. IEEE, Shanghai, China (2019). https://doi.org/10.1109/ICC.2019.8762055.

  28. Ester, M., Kriegel, H.-P., Sander, J., Xu, X.: A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise. In: Proceedings of the Second International Conference on Knowledge Discovery and Data Mining. pp. 226–231 (1996).

  29. Campello, R. J. G. B., Moulavi, D., & Sander, J. (2013). Density-Based Clustering Based on Hierarchical Density Estimates. In J. Pei, V. S. Tseng, L. Cao, H. Motoda, & G. Xu (Eds.), Advances in Knowledge Discovery and Data Mining (pp. 160–172). Berlin Heidelberg, Berlin, Heidelberg: Springer.

    Chapter  Google Scholar 

  30. Ertöz, L., Steinbach, M., Kumar, V.: Finding Clusters of Different Sizes, Shapes, and Densities in Noisy, High Dimensional Data. In: Proceedings of the 2003 SIAM International Conference on Data Mining. pp. 47–58. Society for Industrial and Applied Mathematics (2003). https://doi.org/10.1137/1.9781611972733.5.

  31. Ankerst, M., Breunig, M. M., Kriegel, H.-P., & Sander, J. (1999). OPTICS: Ordering points to identify the clustering structure. ACM SIGMOD Record., 28, 49–60. https://doi.org/10.1145/304181.304187

    Article  Google Scholar 

  32. Böhm, C., Plant, C.: HISSCLU: A Hierarchical Density-Based Method for Semi-Supervised. In: Proceedings of the 11th international conference on Extending database technology: Advances in database technology. pp. 440–451 (2008).

  33. Zhang, L., Afanasyev, A., Burke, J. A., Jacobson, V. L., Claffy, K. C., Crowley, P. J., Papadopoulos, C., Wang, L., & Zhang, B. (2014). Named data networking. ACM SIGCOMM Computer Communication Review, 44, 66–73.

    Article  Google Scholar 

  34. Hoque, A.K.M.M., Amin, S.O., Alyyan, A., Zhang, B., Zhang, L., Wang, L.: NISR: named-data link state routing protocol. In: Proceedings of the 3rd ACM SIGCOMM workshop on Information-centric networking - ICN ’13. p. 15. ACM Press, Hong Kong, China (2013). https://doi.org/10.1145/2491224.2491231.

  35. Marche, C., Atzori, L., Pilloni, V., & Nitti, M. (2020). How to exploit the social internet of things: Query generation model and device profiles’ dataset. Computer Networks., 174, 107248. https://doi.org/10.1016/j.comnet.2020.107248

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Qin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, W., Qin, Y. & Wu, B. A hyperbolic routing scheme for information-centric internet of things with edge computing. Wireless Netw 27, 4567–4579 (2021). https://doi.org/10.1007/s11276-021-02751-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-021-02751-7

Keywords