Skip to main content
Log in

Secure one-way relaying scheme based on random difference family (RDF) lattice codes

  • Original Paper
  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

In this paper, we present a one-way relaying scheme in which two wireless nodes create an information flow to each other via a single decode-and-forward (DF) relay. We consider an additional secrecy constraint for protection against an honest-but-curious relay. Indeed, while the relay should decode the source message, it should be fully ignorant about the message content. We provide a secure lattice coding strategy based on random difference families (RDF) lattice codes for unidirectional Gaussian relay channels. RDF lattice codes are carved from infinite RDF lattices using a shaping algorithm. By RDF lattice we mean a Construction A lattice with a QC-LDPC code, which is obtained from random difference families, as underlying code. Due to the existence of low-overhead encoding and decoding algorithms, these lattice codes can be implemented practically in high dimensions. Our proposed scheme combines a new Rao–Nam-like encryption with a new DF relaying scheme for RDF lattice codes. Security analysis of the scheme against chosen-plaintext attacks like differential attack and other recent attacks on the Rao–Nam-like schemes are provided. We show that the proposed scheme resists against all variants of differential cryptanalysis. To the best of our knowledge, the proposed scheme is the first in its type and according to our simulation results, it improves the error performance, efficiency and security at the same time, compared to its counterparts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bagheri, K., Eghlidos, T., Sadeghi, M. R., Panario, D., & Khodaiemehr, H. (2020). A joint encryption, channel coding and modulation scheme using QC-LDPC lattice-codes. IEEE Transactions on Communications, 68(8), 4673–4693.

    Article  Google Scholar 

  2. Bagheri, K., Sadeghi, M. R., & Eghlidos, T. (2017). An efficient public key encryption scheme based on QC-MDPC lattices. IEEE Access, 5, 25527–25541.

    Article  Google Scholar 

  3. Bagheri, K., Sadeghi, M. R., Eghlidos, T., & Panario, D. (2016). A secret key encryption scheme based on 1-level QC-LDPC lattices. In 2016 13th international Iranian society of cryptology conference on information security and cryptology (ISCISC) (pp. 20–25).

  4. Bagheri, K., Sadeghi, M. R., & Panario, D. (2017). A non-commutative cryptosystem based on quaternion algebras. Designs, Codes and Cryptography, 86(10), 2345–2377.

    Article  MathSciNet  Google Scholar 

  5. Baldi, M. (2014). QC-LDPC code-based cryptography. Springer.

    Book  Google Scholar 

  6. Chai, Q., & Gong, G. (2011). Dierential cryptanalysis of two joint encryption and error correction schemes. In Proceedings of the global communications conference, (GLOBECOM) (pp. 1–6).

  7. Chen, G., Gong, Y., Xiao, P., & Chambers, J. A. (2015). Physical layer network security in the full-duplex relay system. IEEE Transactions on Information Forensics and Security, 10(3), 574–583.

    Article  Google Scholar 

  8. Cisco: Cisco visual networking index: Forecast and methodology, 2016–2021. Retrieved from 21 October 2019 https://www.reinvention.be/webhdfs/v1/docs/complete-white-pap er-c11-481360.pdf (2017).

  9. Conway, J. H., & Sloane, N. J. A. (1998). Sphere packing, lattices and groups. Springer.

  10. Cover, T., & El Gamal, A. (1979). Capacity theorems for the relay channel. IEEE Transactions on Information Theory, 25(5), 572–584.

    Article  MathSciNet  Google Scholar 

  11. Dang, C., Rodríguez, L. J., Tran, N. H., Shelly, S., & Sastry, S. (2015). Secrecy capacity of the full-duplex AF relay wire-tap channel under residual self-interference. In 2015 IEEE wireless communications and networking conference (WCNC) (pp. 99–104).

  12. Elsaid, L., Ranjbar, M., Raymondi, N., Nguyen, D. H. N., Tran, N. H., & Mahamadi, A. (2017). Full-duplex decode-and-forward relaying: Secrecy rates and optimal power allocation. In 2017 IEEE 85th vehicular technology conference (VTC Spring) (pp. 1–6).

  13. Ferdinand, N. S., Nokleby, M., & Aazhang, B. (2013). Low density lattice codes for the relay channel. IEEE international conference on communications (ICC) (Vol. 2013, pp. 3035–3040).

  14. Ferdinand, N. S., Nokleby, M., & Aazhang, B. (2015). Low-density lattice codes for full-duplex relay channels. IEEE Transactions on Wireless Communications, 14(4), 2309–2321.

    Article  Google Scholar 

  15. Guo, Q., Johansson, T., Mårtensson, E., & Stankovski, P. (2017). Information set decoding with soft information and some cryptographic applications. In IEEE international symposium on information theory (ISIT) (pp 1793–1797)

  16. Hasna, M. O., & Alouini, M. S. (2003). End-to-end performance of transmission systems with relays over Rayleigh-fading channels. IEEE Transactions on Wireless Communications, 2(6), 1126–1131.

    Article  Google Scholar 

  17. He, X., & Yener, A. (2008). Providing secrecy with lattice codes. In 2008 46th annual Allerton conference on communication, control, and computing (pp. 1199–1206).

  18. Khodaiemehr, H., & Eghlidos, T. (2018). A practical and secure lattice-based scheme for full-duplex Gaussian one-way relay channels. In 15th international ISC (Iranian Society of Cryptology) conference on information security and cryptology (ISCISC) (pp. 1–8).

  19. Khodaiemehr, H., & Kiani, D. (2017). Construction and encoding of QC-LDPC codes using group rings. IEEE Transactions on Information Theory, 63(4), 2039–2060.

    Article  MathSciNet  Google Scholar 

  20. Khodaiemehr, H., Kiani, D., & Sadeghi, M. R. (2015). One-level LDPC lattice codes for the relay channels. In 2015 Iran workshop on communication and information theory (IWCIT) (pp. 1–6).

  21. Khodaiemehr, H., Kiani, D., & Sadeghi, M. R. (2017). LDPC lattice codes for full-duplex relay channels. IEEE Transactions on Communications, 65(2), 536–548.

    Article  Google Scholar 

  22. Khodaiemehr, H., Panario, D., & Sadeghi, M. R. (2021). Design and practical decoding of full-diversity construction a lattices for block-fading channels. IEEE Transactions on Information Theory, 67(1), 138–163.

    Article  MathSciNet  Google Scholar 

  23. Khodaiemehr, H., Sadeghi, M. R., & Panario, D. (2016). Construction of full-diversity 1-level LDPC lattices for block-fading channels. In 2016 IEEE international symposium on information theory (ISIT) (pp. 2714–2718)

  24. Khodaiemehr, H., Sadeghi, M. R., & Sakzad, A. (2017). Practical encoder and decoder for power constrained QC LDPC-lattice codes. IEEE Transactions on Communications, 65(2), 486–500.

    Article  Google Scholar 

  25. Lin, F., & Oggier, F. (2013). A classification of unimodular lattice wiretap codes in small dimensions. IEEE Transactions on Information Theory, 59(6), 3295–3303.

    Article  MathSciNet  Google Scholar 

  26. Ling, C., Luzzi, L., Belfiore, J. C., & Stehlé, D. (2014). Semantically secure lattice codes for the Gaussian wiretap channel. IEEE Transactions on Information Theory, 60(10), 6399–6416.

    Article  MathSciNet  Google Scholar 

  27. Lv, L., Zhou, F., Chen, J., & Al-Dhahir, N. (2019). Secure cooperative communications with an untrusted relay: A NOMA-inspired jamming and relaying approach. IEEE Transactions on Information Forensics and Security, 14(12), 3191–3205.

    Article  Google Scholar 

  28. May, A., & Ozerov, I. (2015). On computing nearest neighbors with applications to decoding of binary linear codes. In Advances in cryptology, EUROCRYPT 2015 (pp. 203–228). Berlin Heidelberg, Berlin, Heidelberg: Springer.

  29. Ng, D. W. K., Lo, E. S., & Schober, R. (2012). Dynamic resource allocation in MIMO-OFDMA systems with full-duplex and hybrid relaying. IEEE Transactions on Communications, 60(5), 1291–1304.

    Article  Google Scholar 

  30. Nokleby, M., & Aazhang, B. (2011). Lattice coding over the relay channel. IEEE international conference on communications (ICC) (Vol. 2011, pp. 1–5).

  31. Otmani, A., Tillich, J. P., & Dallot, L. (2010). Cryptanalysis of two McEliece cryptosystems based on quasi-cyclic codes. Mathematics in Computer Science, 3(2), 129–140.

    Article  MathSciNet  Google Scholar 

  32. Rao, T. N. R., & Nam, K. H. (1986). A private-key algebraic-coded cryptosystem. In Advances in cryptology, Crypto’86 (pp. 35–48).

  33. Riihonen, T., Werner, S., & Wichman, R. (2011). Hybrid full-duplex/half-duplex relaying with transmit power adaptation. IEEE Transactions on Wireless Communications, 10(9), 3074–3085.

    Article  Google Scholar 

  34. Rodríguez, L. J., Tran, N. H., & Le-Ngoc, T. (2014). Performance of full-duplex AF relaying in the presence of residual self-interference. IEEE Journal on Selected Areas in Communications, 32(9), 1752–1764.

    Article  Google Scholar 

  35. Shiu, Y. S., Chang, S. Y., Wu, H. C., Huang, S. C. H., & Chen, H. H. (2011). Physical layer security in wireless networks: A tutorial. IEEE Wireless Communications, 18(2), 66–74.

    Article  Google Scholar 

  36. da Silva, E., dos Santos, A. L., Albini, L. C. P., & Lima, M. N. (2008). Identity-based key management in mobile ad hoc networks: Techniques and applications. IEEE Wireless Communications, 15(5), 46–52.

    Article  Google Scholar 

  37. Sommer, N., Feder, M., & Shalvi, O. (2008). Low-density lattice codes. IEEE Transactions on Information Theory, 54(4), 1561–1585.

    Article  MathSciNet  Google Scholar 

  38. Struik, R., & van Tilburg, J. (1988). The Rao-Nam scheme is insecure against a chosen-plaintext attack. In Advances in cryptology, CRYPTO ’87 (pp. 445–457). Berlin Heidelberg, Berlin, Heidelberg: Springer.

  39. Sun, H. M., & Hwang, T. (1994). Key generation of algebraic-code cryptosystems. Computers & Mathematics with Applications, 27(2), 99–106.

    Article  MathSciNet  Google Scholar 

  40. Yiwei, N., & Devroye, N. (2013). Lattice codes for the Gaussian relay channel: Decode-and-forward and compress-and-forward. IEEE Transactions on Information Theory, 59(8), 4927–4948.

    Article  MathSciNet  Google Scholar 

  41. Zhang, R., Song, L., Han, Z., Jiao, B., & Debbah, M. (2010). Physical layer security for two way relay communications with friendly jammers. In 2010 IEEE global telecommunications conference GLOBECOM 2010 (pp. 1–6).

Download references

Acknowledgements

The authors are grateful to the editor and the referees for their very meticulous reading of this manuscript. Their suggestions were very helpful in creating the improved final version.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan Khodaiemehr.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The research of the second author was supported in part by a grant from IPM (No. 1400050115), and the fourth author was supported by NSERC of Canada. Part of the results of this paper have been presented at the 15th international ISC conference (ISCISC 2018) [18].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bagheri, K., Khodaiemehr, H., Eghlidos, T. et al. Secure one-way relaying scheme based on random difference family (RDF) lattice codes. Wireless Netw 27, 4615–4634 (2021). https://doi.org/10.1007/s11276-021-02753-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-021-02753-5

Keywords

Navigation